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ABSTRACT 

 

 Scaffold based tissue reconstruction inherently limits regenerative capacity due to 

inflammatory response and limited cell migration. In contrast, scaffold-free methods promise 

formation of functional tissues with both reduced adverse host reactions and enhanced 

integration. Cell-sheet engineering is a well-known bottom-up tissue engineering approach that 

allows the release of intact cell sheet from a temperature responsive polymer such as poly-N-

isopropylacrylamide (pNIPAAm). pNIPAAm is an ideal template for culturing cell sheets 

because it undergoes a sharp volume-phase transition owing to the hydrophilic and hydrophobic 

interaction around its lower critical solution temperature (LCST) of 32°C, a temperature close to 

physiological temperature. Compared to enzymatic digestion via trypsinization, pNIPAAm 

provides a non-destructive approach for tissue harvest which retains its basal surface 

extracellular matrix and preserves cell-to-cell junctions thereby creating an intact monolayer of 

cell sheet suitable for tissue transplantation. 

 The overall thrust of this dissertation is to gain a comprehensive understanding of how 

tissue precursors are formed, harvested and printed from interactions with shape-changing 

pNIPAAm hydrogel. A simple geometrical microbeam pattern of pNIPAAm structures 

covalently bound on glass substrates for culturing mouse embryonic fibroblast and skeletal 

myoblast cell lines is presented. In order to characterize the cell-surface interactions, three main 

investigations were conducted: 1) the mechanism of cell detachment; 2) the feasibility of micro-
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contact printing tissue precursors onto target surfaces; and 3) the assembly of these tissues into 

three-dimensional (3D) constructs.  

 Detachment of cells from the shape-changing hydrogel was found to correlate with the 

lateral swelling of the microbeams, which is induced by thermal activation, hydration and shape 

distortion of the patterns. The mechanism of cell detachment was primarily driven by strain, 

which occurred almost instantaneously above a critical strain of 25%. This shape-changing 

pNIPAAm construct allows water penetration from the periphery and beneath the attached cells, 

providing rapid hydration and detachment within seconds. Cell cultured microbeams were used 

as stamps for micro-contact printing of tissue precursors and their viability, metabolic activity, 

local and global organization were evaluated after printing. The formation and printing of intact 

tissues from the shape-changing hydrogel suggests that the geometric patterning of pNIPAAm 

directs spatial organization through physical guidance cues while preserving cell functioning. 

Tissue precursors were sequentially assembled into parallel and perpendicular configurations to 

demonstrate the feasibility of constructing dense tissues with different organizations such as 

interconnected cell lines that could induce vascularization to solve perfusion issues in 

regenerative therapies. The novel approach presented in this dissertation establishes an efficient 

method for harvesting and printing of tissue precursors that may be applicable for the modular, 

bottom up construction of complex tissues for organ models and regenerative therapies. 
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CHAPTER 1: INTRODUCTION 

 

 This dissertation reports investigation of formation, release and printing of tissue 

precursors from shape changing surfaces that are thermally responsive to conditions close to 

physiological temperature. 

1.1. Motivation 

 Tissue engineering is a promising approach to circumvent the shortage of organ donors 

needed to extend life. The use of autologous tissues for transplantation will provide an 

alternative to current therapy of organ transplantation that could lead to reduction in organ 

rejection or inflammatory response. Thus studies on development of functional tissues are of 

great importance in regeneration of diseased tissues or organ structures.  

 Cardiovascular diseases (CVD) in particular are the leading cause of death in the United 

States of America for both females and males. In 2014 alone, the mortality report indicated that 

more than 2150 Americans succumb to this disease daily; an average of 1 death every 40 

seconds. By 2030, at least 40% of the U.S. population is projected to experience some form of 

CVD [1]. The American Heart Association’s impact goal for 2020 is to reduce deaths from CVD 

by 20%. Thus far, there have not been any successful clinical trials for engineering replacement 

cardiovascular tissues. 

 The main challenge in tissue engineering is the ability to recapitulate the complex three-

dimensional (3D) microarchitecture of the organs or tissues that would aid vascularization upon 
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implantation. An engineered 3D tissue construct should promote formation of vascular networks 

to aid prolific diffusion of nutrients and removal of metabolic waste. Also, the construct should 

be mechanically robust to sustain the continuous contractility function of a normal tissue or 

organ. Once implanted the engineered tissue should enhance or sustain the regular functionality 

of the diseased tissues.  

1.2. Significance 

 This research provides understanding to the fundamental principles governing formation 

and assembly of 3D tissue precursors that could be further developed to closely represent the 

native tissues. The successful realization of this study provides a viable construct suitable for 

restoring functions of damaged tissues or organs that could overcome these key obstacles; 

vascular integration, diffusion, blood perfusion and new capillary formation in vivo thus 

revolutionize regenerative therapy. 

 The approaches developed in this study describe how a thermally responsive hydrogel is 

fabricated into patterned shape-changing structures and are used to direct cellular organization 

into tissue building blocks with defined shape and size while facilitating release and printing of 

tissues modules via a strain-induced detachment process which is driven by a thermal shift for 

only a short duration of 5 minutes.  

1.3. Objectives, Hypothesis and Scope 

 The long-term goal of this research is to decrease the rates of those suffering from 

cardiovascular diseases by the development of a reliable method for generation of functional 

vascularized tissues. To accomplish this goal, the focus of this thesis project was to employ a 

temperature responsive hydrogel, poly-N-isoprylacrylamide to construct organized and multi- 
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layered tissue precursors that will aid regenerative repairs after transplantation. Towards this 

goal, the research objectives and hypotheses were three-fold. 

1.3.1. Objective I and Scope 

 To establish a reliable and viable cell printing mechanism that demonstrates rapid 

fabrication of functional tissue precursors. Successful contact printing of cells on shape changing 

substrates depends on process variables: geometry, surface chemistry, time, pressure and 

temperature. The working hypothesis is that conformal contact between the target surface and 

stamp while in its swollen state will produce complete tissue detachment. To test this, the effects 

of the contact printing parameters were assessed and the corresponding cell morphology, 

organization and viability were evaluated. The scope of this study is to introduce a new method 

of fabricating tissues in vitro that would facilitate the production of robust tissues and also 

potentially reduce the long waiting list of organ donors.  

1.3.2. Objective II and Scope 

 To investigate the biological effects of micro-contact printing on the developed micro-

tissues that shows proper cell functioning. Cells are known to interact with adsorbed protein 

through their intercellular signal molecules. The two main interactions are the cell-to-cell 

communications and cell-to-extracellular matrix (ECM). The working hypothesis is that the 

duration and pressure applied during printing does not perturb cell normal activities such as 

adhesion or biochemical signaling. The scope of this study is to demonstrate that fabricated 

tissues via the novel printing method provide reliable functional tissues and also allows for scale-

up production of complex tissues and organs.  
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1.3.3. Objective III and Scope 

 To construct multi-layered tissues modules by assembly of patterned cell stripes on top of 

each other or on monolayers of cell sheets. The working hypothesis is that stacking of tissue 

precursors may aid formation of 3D tissue constructs that can be used to promote development of 

vascular networks when cultured with various cell types. The scope of this study is to show that 

formation of capillaries with adequate perfusion can be developed by exploration of 3D tissue 

orientations through the combination of shape-changing hydrogel and a micro-contact printing 

technique. Neovascularization in engineered tissues is important for formation of new blood 

vessels to repair diseased tissues or organs. 

1.4. Summary of Chapters 

 Chapters 1 and 2 provide the basis for conducting this research as it pertains to the 

relevant applications in tissue engineering. An overview of each aspect of the research from the 

research motivation, objectives, properties of the shape-changing hydrogel, cell and protein 

adhesion to current studies in engineering functional tissues using non-scaffold based platforms 

and in vitro tissue engineering is discussed. 

 Chapter 3 reports studies on how the shape-changing hydrogel was used to trigger rapid 

release of tissue precursors by employing a mechanically driven cell detachment mechanism. 

The data in this chapter has been published in Acta Biomaterialia and the copyrights permission 

from the publisher is displayed in appendix A. The results show that release of tissue modules 

occurred almost instantaneously depending on the cell seeding densities. A high cell seeding 

density induced a more rapid release due to the bonds formed between the cell-to-cell contacts. 

Complete tissue detachment occurred under 5 minutes. Mechanism of cell release studies 

suggested that release of tissue modules from shape-changing hydrogel is not a metabolic 
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activity but primarily driven by strain. An applied strain greater than 25% was observed to 

induce cell detachment even when the ATP was blocked. A LIVE/DEAD assay revealed that cell 

released from such dynamic surface is still viable for tissue formation. 

 Chapter 4 presents studies on the printing of tissue precursors from the shape-changing 

hydrogel structures by adapting micro-contact printing techniques. Effects of contact printing 

parameters, protein adsorbed on target surface, cell type, cytoskeleton examination, cell 

alignment and orientation studies were evaluated. The results reveal that printed tissues of 3T3 

fibroblasts on target surfaces composed of human plasma fibronectin, collagen type 1 and poly-l-

lysine individually demonstrated adequate cell viability with retained cell morphology, 

organization and pronounced focal adhesion complexes. Patterning of the shape-changing 

hydrogel composed of poly-N-isopropylacrylamide directed cellular organization while the 

applied compressive pressure during printing controlled cell viability. 

 Chapter 5 demonstrates the feasibility of stacking tissue precursors into multi-layered 

structures for construction of three-dimensional tissues for reconstructive tissue engineering and 

regenerative medicine. Patterned tissue precursors were assembled onto monolayer of cell sheet 

with orientations in parallel and perpendicular directions using either fibroblasts or myoblasts. 

Studies on how to improve the stacking resolution were investigated and discussed. The results 

suggest that maintenance of cellular organization in three-dimension configuration pose a 

challenge. 

 Chapter 6 presents overall research conclusions and provides directions for future studies 

in an attempt to accomplish the long-term goal of the research of developing robust tissues for 

treatments of cardiovascular diseases.  
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 Finally, appendix B lists and describes the experimental methods and materials employed 

to execute the research objectives. The four main experimental procedures of this research were 

discussed in detail. Firstly, cell cultures of NIH/3T3 fibroblasts and C2C12 skeletal myoblasts 

were maintained frequently for cell attachment, release and print studies. Secondly, soft- and 

photolithography methods were used to fabricate and polymerize the shape-changing hydrogel 

arrays with defined beam width and spacing. Thirdly, a micro-contact printing technique was 

employed in transferring attached tissue precursors to target surfaces. And lastly, fluorescence 

microscopy was employed for imaging and analyses of the tissue modules to reveal information 

on cell morphology, organization and viability. 
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CHAPTER 2: BACKGROUND 

 

2.1. Properties of Poly-N-isopropylacrylamide  

 Poly-N-isopropylacrylamide (pNIPAAm) polymers are classified as smart materials in 

that they respond to external stimuli such as temperature. Synthesis with other polymers or 

incorporation of other moieties attracts respond to other stimuli such as ions [2, 3], pH [4, 5] or 

magnetic fields [6, 7].  The response to temperature occurs around its lower critical solution 

temperature (LCST) of 32 °C in aqueous solution where a reversible phase transition point 

occurs. The LCST corresponds to the region in the phase diagram at which the enthalpy 

contribution of water, hydrogen bonding to the polymer chain becomes less than the entropic 

gain of the whole system and thus is largely dependent on the hydrogen bonding capabilities of 

the constituent monomer units [8].  

     

Figure 2-1: Macroscopic response of poly-N-isopropylacrylamide around its LCST. 
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Physical and chemical reaction of pNIPAAm to external stimulus occurs about its LCST. 

Environmental changes to a covalently cross-linked pNIPAAm can result into two main 

reversible physical structures; a swollen or collapsed structure (Figure 2.1). An aqueous solution 

of pNIPAAm heated above 32°C becomes hydrophobic due to the formation of intramolecular 

hydrogen bonding between the carboxyl and amide groups thus polymer precipitates out from 

solution resulting in a compact and collapsed state (Figure 2-2). Below the LCST, the 

intermolecular hydrogen bonding between water molecules and pNIPAAm is dominant leading 

to a completely soluble solution (a hydrophilic interaction) and thus results into a swollen state.  

 

     

Figure 2-2: Structure of poly-N-isopropylacrylamide 

 

2.1.1. Grafted pNIPAAm Surfaces for Cell Studies  

 Nanoscale thin grafted films of pNIPAAM coatings are typically prepared by electron 

beam polymerization (EBP) [9, 10], plasma polymerization [11, 12], surface-initiated atom 

transfer radical polymerization (ATRP) [13-16] or reversible addition fragmentation chain 

transfer polymerization (RAFT) [17] methods. The ability for cells to attach and detach on these 
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different methods of grafting deposition differs based on their molecular weights, film thickness, 

chain length and grafting densities. Typically, low densities and ultrathin films (< 30 nm) favors 

cell adhesion due to the shorter chain length. At this regime, hydration of the chains is limited 

which may limit the conformational collapse during the thermal shift thus promoting protein 

interaction with the basal substrate [18]. In contrast, high grafting densities, long chain length 

and increased thickness promote cell detachment. An increased hydrophilicity of the brushes is 

observed with decrease protein adsorption. In most of these grafting methods, film thickness 

above 45 nm impedes cell adhesion. Table 2-1 lists some of the grafting deposition techniques 

and their corresponding coating thickness and densities that are conducive for cell attachment.  

Table 2-1: Grafted pNIPAAm films for cell adhesion 

Grafting Method Densities 

mg/cm2 

Dry 

thickness, 

nm 

Contact 

Angle 

Swollen 

Contact 

Angle 

Collapse 

Release 

time 

(mins) 

Ref. 

EBP 1.4-2.9 15.5- 29.3 n/a n/a 90 [10] 

Plasma 

polymerization 

n/a 50 [9] 34 40 n/a [11] 

ATRP 0.2 - 0.3 10.9 - 30.4 37.81 44 60 - 120 [13] 

RAFT n/a n/a 55.24 54.5 30 [17] 

 

 The hydrophillicity and hydrophobicity of the surface can be modified to improve cell 

adhesion and detachment by employing the RAFT method. Fabrication of grafted brushes with 
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carboxylate end groups yielded optimum bioadhesive surface with faster detachment, Table 2-1. 

Though high grafting densities exhibit more hydrophobic surfaces, cell detachment is 

predominantly dependent on the drastic conformation change that occurs during the temperature 

transition to the swollen state. Also detachment times vary depending on the grafting deposition 

technique and film thickness. As a result, contact angle alone is not sufficient to explain the 

mechanism of detachment from grafted surfaces.  

 Accelerated cell detachment is observed in confluent cell sheet compared to single cells 

or clusters. This behavior is attributed to a two-step detachment mechanism; passive and 

metabolic active processes. Upon temperature shift to the swollen state (T < LCST), the polymer 

hydrates instantaneously and the cell morphology is observed to change in the passive stage. In 

the metabolic active state, the cells detached as a sheet with simultaneous contraction in cell 

morphology and ECM [18]. Cell release studies indicate that a metabolism process facilitate 

detachment of cells. Treatment with sodium azide, an ATP inhibitor partially inhibited cell 

detachment suggesting that the mechanism on grafted surfaces is not solely by a reduction in 

cell-surface interactions from the spontaneous chain hydration but also driven by a metabolic 

process. 

 Primary metabolic driven processes could be limiting cell detachment from grafted 

pNIPAAm surfaces. Cell release requires long incubation periods ranging from 30 to 90 minutes 

with low temperature treatment of 4 or 20 °C depending on the cell type [10, 11, 21, 28, 29]. 

Duration of cell detachment from grafted surfaces of pNIPAAM is long due to the fact that water 

can only penetrate through the periphery of the cell sheet. However, the use of a porous 

membrane or incorporation of hydrophilic moiety like poly (ethylene glycol) has been shown to 

accelerate detachment time to 35 minutes [29, 30]. Slow detachment also occurs due to the 
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planar thin films. This planar geometry limits the extent of swelling needed to initiate a 

spontaneous cell release in shorter times. 

2.1.2. pNIPAAM Shape-changing Surfaces 

 Shape-changing pNIPAAm hydrogels employ non-grafting techniques that induce an 

expansion in shape upon thermal reduction below the LCST. Fabrication techniques of these 

non-planar surfaces often involve UV crosslinking, solvent casting and dip coating [19-21]. Cell 

adhesion is delayed with this hydrogel due to the long chain length of the increased thickness 

which when hydrated produces a more hydrophilic surface impeding cell adhesion while 

favoring cell detachment. High degree of hydration and gel expansion occurs due to the 

increased thickness and chain length thereby inducing rapid cell detachment.  

 Methods to improve cell adhesion of shape-changing hydrogel involve copolymerization 

with hydrophobic monomers or coating the surface with a cell adhesion promoter. These cell 

adhesion molecules do not affect the rates of cell detachment [22]. Increase in hydrophobic 

chains enhanced the adsorption of cell adhesive proteins thereby promoting cell adhesion and 

proliferation.  

 Swelling instabilities of microscale surface confined pNIPPAAm hydrogels can yield 

rapid cell detachment almost instantaneously [19]. Additionally, these platforms can generate 

different geometrical patterns depending on the initial aspect ratio of the hydrogel. DuPont et. al 

report four swelling instabilities which are lateral differential swelling, surface creasing, local 

edge buckling and global buckling. Cell studies on these different geometrical patterns of 

pNIPAAm substrates could be used to build tissue precursors for tissue engineering applications. 

Mechanism of cell detachment from the differential lateral swelling geometry requires an applied 

strain of at least 25%. At T < LCST, cell released occurred nearly instantly from the hydrogel 



www.manaraa.com

 12 

arrays and complete detachment was observed in less than 5 minutes [23]. Thus, accelerated cell 

detachment is achievable with this platform however cell adhesion and proliferation is improved 

with initial protein adsorption on the surfaces. Application of shape-changing hydrogel should be 

further explored for formation of diverse tissue geometries that may closely mimic the 

microarchitecture of complex tissues to aid proper functioning.  

 The main difference between cell interactions on grafted films and shape-changing 

surfaces of pNIPAAm is tabulated in Table 2-2. 

Table 2-2: Summary of grafted thin films and shape-changing hydrogel 

pNIPAAm Cell 

adhesion 

Cell 

detachment 

time, mins 

Cell 

detachment 

temp., °C 

Mechanism 

of cell 

detachment 

Pattern/tissue 

geometry 

Grafted Yes 30 - 90 4°C, 20°C Metabolic planar 

Hydrogel Yes* 3 - 5 25-29°C Mechanical Vast 

* Improved with protein adsorption on surfaces. 

2.2. Mechanism of Cell Adhesion on Synthetic Surfaces 

 Cell adhesion on synthetic surfaces is mediated by integrin binding, a family of 

heterodimeric adhesion transmembrane receptors that has extracellular domains which binds to 

ligands at the arginine-glycine-aspartic acid (RGD) peptide sites. Linkage of the integrin 

intracellular domain to actin cytoskeleton is responsible for proper cell functioning like 

proliferation, migration, viability and morphology. [24-29] Adhesion of cells occurs by 

expression of integrin receptors recognizable by the protein ligand. On synthetic surfaces, cell 
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adhesion molecules (CAM) composed of glycoproteins (extracellular proteins such as 

fibronectin, vitronectin, laminin, collagen) or chemically derived proteins (poly-l-lysine, poly-d-

lysine) can be adsorbed on such surfaces to promote attachment providing that the attached cells 

express receptors for the choice of CAM. Tables 2-3 and 2-4 list the binding motifs of selected 

ligands and cell types with their respective integrin receptors.  

 The mechanism of cell attachment is different on glycoproteins and chemically derived 

proteins adsorbed surfaces. Naturally occurring proteins like fibronectin binds its divalent ions to 

the ECM of the cells [30, 31]. While positively charged ions of synthetically derived proteins 

like poly-l-lysine binds to the plasma membrane anions of cells via electrostatic interactions [32]. 

 Attachment of cells on protein-adsorbed surfaces is also influenced by the design of 

target surface and the protein state. Cell adhesion can be dictated based on surface chemistry, 

surface energy, roughness, topography and wettability [31, 33-35]. While the protein type, 

concentration, conformation and orientation are also important factors for regulating cell 

attachment [36-39].  

 Cell adhesion on target surfaces composed of a monolayer of cells like stacked tissue 

sheets require a different binding mechanism. This adhesion occurs through formation of cell-to-

cell contacts mediated by calcium dependent homophillic molecules called cadherins. The 

mechanism of cell-to-cell adhesion occurs via formation of tight junctions, desmosomes, 

adherens junctions and gap junctions. Each of these bonds is responsible for regulating unique 

cell functioning although not all these junctions are present in every cell type except for 

epithelial cells.  
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Table 2-3: Cells and their corresponding integrin receptors 

Cell type Integrin Ref. 

Fibroblasts α1β1 [40] 

α2β1 

α3β1 

α5β1 

Myoblasts α2β1 [41, 42] 

 
α3β1 

α4β1 

α5β1 

α6β1 

α7β1 

α5β3 

α4β7 

  

 Cellular communication for cell-to-cell formation proceeds through specific markers 

exhibited by both neighboring cells. For instance, endothelial cells and cardiac fibroblasts have 

tight association in the coronary vasculature of mice due the communication by their gap 

junctions and ECM [43]. 

2.3. Printing of Tissue Precursors 

 In vitro printings of tissue precursors deem promising for the replacement or repair of 

tissues or organ structures. The main challenge is the ability to manufacture tissues that closely 

represent the native microarchitecture of tissues by utilizing multiple cell types with adequate 
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precision and resolution necessary to recapitulate biological functions. Successful realization of 

these printing techniques could bring about a transformational change in tissue engineering and 

regenerative medicine needed to prolong lives.  

 

Table 2-4: Proteins and their corresponding integrin receptors 

Cell type Integrins Ref. 

Fibronectin α1β1 [44-46] 

 
α3β1 

α4β1 

α5β1 

α8β1 

αvβ1 

αvβ3 

αvβ6 

α4β7 

Collagen type 

I 

α1β1 [40, 44, 45, 

47, 48] 

 

α2β1 

α10β1 

α11β1 

αvβ8 
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2.3.1. Inkjet Bioprinting  

 Inkjet-based bioprinters are the most commonly used strategy for printing 3D tissues. 

Similar to conventional inkjet printer technology, the ink cartridges and paper are substituted in 

the bioprinters with biological relevant materials and a motorized stage for controlled delivery 

and assembly of cells. Either piezoelectric or thermal forces are used to eject liquid droplets from 

the nozzle to a target substrate in order to build the desired construct. Application of this 

technique has been used in regeneration of skin tissues, bone and cartilage constructs [49-52].  

 This strategy allows for printing with increased resolution and speed. The use of localized 

electrical heating > 200 °C at the printhead to generate the drops of liquid in thermal printers 

does not drastically affect cell viability and stability [53]. But the frequent exposure of cells to 

shear stresses, high heat, clogging of nozzles and inadequate directionality of inconsistent sized 

droplets imposes major drawbacks for this approach. On the other hand, piezoelectric printers 

eject droplets with an acoustic wave with adjustable pulses, droplet sizes, duration and rates [54]. 

Although the piezoelectric printers address some of the drawbacks experienced with thermal 

printers, the need for low viscous biological liquids and the applied frequencies pose a potential 

damage for occurrence of cell lysis and disruption of cell membrane [55]. Together the inkjet 

printing of mammalian cells are limited to low cell densities and unique cell types [53]. 

2.3.2. Microextrusion Bioprinting   

 Extrusion-based printers utilize mechanical or pneumatic extrusion systems to eject beads 

of biological materials onto a substrate by employing a computer aided software to direct a 

motorized stage. The use of intermediate materials such as hydrogels, cell suspensions and self-

assembled spheroids is a requirement with these printers. Applications have been in fabrication 

of vascular trees and aortic valves [56-59]. 
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 This system allows for construction of complex tissue structures due to its controlled 

spatial distribution, which enables patterning of different cell types. Additionally, it is 

compatible with high viscosity materials that have shear thinning properties and allow deposition 

of high cell densities. The main drawbacks of this technique are the low resolution; print speed; 

and the low cell survival rates of 40-86% depending on the nozzle diameter and pressure of the 

extruder [60, 61].  

2.3.3. Micro-contact Printing of Cells 

 Micro-contact printing (µCP) technique for printing of cells is a relatively new approach 

for fabrication of mini-tissue building blocks. Whitesides first established this technique in 1993 

by using a polydimethylsiloxane (PDMS) elastomeric stamp consisting of bas-relief features 

[36]. The stamp is used to ink self-assembled (SAM) alkanethiol monolayers on gold surfaces 

with designed patterns at micron length scales. Employing a photolithography technique to 

develop the desired template of patterns controls spatial distribution of the deposited material. 

Although micro-contact printing technique was originally developed to pattern gold, numerous 

materials have now been patterned such as organic solvents, polymers, proteins, metals and cells 

[62-65]. Cell patterning with this technique is primarily by patterning proteins onto substrates for 

selective cell adhesion. No studies on direct printing of patterned cells have been revealed to date 

except in this dissertation.  

 The elastomeric stamp deforms macroscopically via mechanical compression allowing 

the protruding features to conform to the target substrate over large surface area. This 

deformable property of the stamp and its low surface energy enables instant inking of material to 

be transferred, printing to the target and instant removal without obstructing the patterned ink. To 

ensure successful printing, the target substrate must be more energetically favorable than the 
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stamp. Also transfer efficiency is determined by the surface chemistries of the stamp and target. 

The drawback of this technique is the deformability feature of the stamps, which poses a limit on 

the aspect ratios and resolution of the features. The failure events are typically sagging, lateral 

and buckle collapse of the stamp features.  

2.4. Tissue Engineering Applications 

2.4.1. Cell Culture, Recovery and Cell Sheet Engineering 

 Recovery of cultured cells by conventional means could be detrimental to the health of 

the cells. Traditional cell harvesting techniques involves either mechanical dissociation or 

proteolysis. A silicone rubber is used in the mechanical method to disaggregate cells, which 

could lead to loss of cell number and disrupted cell membranes [66]. The commonly used 

proteolysis, enzymatic digestion with trypsin-EDTA, suppresses expression of transmembrane 

proteins by down regulating proteins responsible for cell proliferation and metabolism while up 

regulating the apoptosis related proteins [67].  

 Recently, thermoresponsive pNIPAAM grafted surfaces have been proven as suitable 

systems for cell recovery through a mild temperature modulation without inducing any harsh 

treatment of the cells [68, 69]. Rather, cells are harvested as “cell sheets” with retained 

metabolism and functionality. This cell culture recovery system is termed “cell sheet 

engineering” as coined by Teruo Okano in the early 1990’s. Cells are cultured on the 

thermoresponsive surface at physiological temperature of 37 °C above its LCST until confluency 

is reached. At T < LCST, the surface becomes more hydrophilic resulting in a volume expansion, 

which initiates a spontaneous release of the attached cells as continuous confluent cell sheet. 

Compared to mechanical scraping and enzymatic digestion via trypsinization, pNIPAAm 

substrates provide a non-invasive approach for cell harvest since its basal surface ECM is 
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maintained and the cell-to-cell junctions are well preserved thus an intact monolayer of cell sheet 

is created, which is suitable for tissue transplantation [70, 71].  

 Temperature modulated cell culture recovery systems allow the use of harvested 

autologous cells for clinical regenerative therapies thereby reducing chances of inflammatory 

response or host rejection problems. This approach also allows for additive assembly of two 

dimensional (2D) cell sheets into 3D tissue constructs from multiple cell lines. Successful studies 

employing this technique include engineering of tissues such as periodontal ligament, corneal, 

renal, oesophageal ulceration, and myocardial tissues [72-76]. 

2.4.2. Cellular Organization on Patterned Surfaces 

 Cell microenvironment studies are important for regulating cellular behavior and 

functionality. Micropatterning of substrates for cell alignment studies provides the capacity to 

engineer organized patterned complex structures that mimic native tissues in order to reproduce 

their structural cues. Patterning of tissues is accomplished by culturing cells on surfaces with 

defined pattern geometry that can direct cell orientation and guide attachment. Surface patterning 

is commonly accomplished by employing micro-contact printing techniques or soft lithography 

[64, 65, 77, 78]. 

 Regulation of cell orientation and its ECM in vitro is crucial for controlling tissue 

geometry when stacking tissue constructs in order to maintain tissue integrity or induce desirable 

biological response. In contrast, lack of topographical cues or structural organization may alter 

protein expression and cell functioning. For instance, innately organized interconnected 

cardiomyocytes were observed to form aligned fields of spontaneous synchronous beatings with 

neighboring patterned cells when cultured on protein patterned surfaces with defined width and 

spacing dimensions [62, 79]. Likewise anisotropy skeletal myoblast, which are natively 
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composed of parallel bundles of multinucleate muscle fiber, was found to re-orient the bottom 

layer of a thick unpatterned 4-layered cell sheets when stacked on the top sheet [80, 81]. 

 Control of cytoskeleton components can be regulated by organization of cells on 

patterned surfaces. The significant orientation of actin filaments observed in cell layers of normal 

human dermal fibroblasts (NHDF) after few days on 50 µm patterns of pNIPAAm copolymer 

suggested that the cytoskeleton is controlled by the surface topography [82]. Limitations of 

micropatterning technique are loss of cell alignment, which could be dependent on cell 

phenotype expression or cell seeding densities.  

2.4.3. Fabrication of 3D Tissues with Layer-by-layer Assembly  

 Construction of functional 3D tissues in vitro without the use of scaffolds is achievable 

by employing an automatic plunger-like cell sheet stacking manipulator system. This stacking 

process involves multiple layer-by-layer steps. Multiple cell culture dishes are maintained on 

pNIPAAm-grafted surfaces while gelatin or fibrin hydrogel is adhered to the bottom of the 

manipulator. The cell adhesive hydrogel manipulator is then brought in contact with a confluent 

cell layer at an incubation temperature of 20 °C. After an elapse time, the cell sheet is lifted off 

and stacked on another layer of sheets until the desired number of multilayered sheet is attained. 

Then the hydrogel is dissolved away leaving behind the multilayered construct [83, 84]. The 

resulting thickness for a five-layered tissue construct is approximately 80 µm which is fabricated 

in 100 minutes. 

 Application of this manipulator system has led to successful in vitro tissue model of 

tissue constructs for regenerative medicine such as cardiomyopathy, Type 1 diabetes and visual 

acuity [85-87]. The main challenge of this technique is the fabrications of cell dense pre-

vascularize thick tissue grafts to recapitulate the complex microarchitecture of native tissues. In 
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general, co-cultures of endothelial cells with fibroblasts, myoblasts and cardiomyocytes have 

been used to control vascular network formation in vitro. Though endothelial cells are used as 

vascular precursors, the extent of vascular network formation is dependent on its patterning 

directionality, frequency of contacts and the spatial distribution of the cells between layers of the 

other cell types. 

 Long-term viability of transplanted tissue grafts requires adequate vascularization to 

promote angiogenesis in vivo. In vivo transplantation of patterned endothelial cells within 

fibroblast or myoblasts in nude rat showed sufficient connection to host vessels thereby resulting 

in viable grafts which promoted neovascularization [88, 89]. Similarly endothelial cells co-

culture with myocardial tissues enhanced neovascularization and the spontaneously pulsated 

cardiac sheets improved cardiac function and in a rat infarction model [90, 91].  

 Limitations of the technique include limited thickness for in vitro static culture; possible 

tearing of cell sheets; inadequate weight of manipulator sufficient to adhere to cell sheets; and 

cold treatments at 20 °C for duration up to 60 minutes in the pre-cooling groups. 

2.4.4. Myocardial Infarction 

 Cardiovascular disease is the leading cause of morbidity and mortality in developed 

nations. In the United States alone, over 300,000 people die each year from myocardial 

infarctions (MI) [92]. Myocardium in the left ventricle (LV) is responsible for the contractility 

and electrical conductivity of the heart. Impaired myocardial tissue is composed of terminally 

differentiated cardiac myocytes whose ability to self-regenerate is less than 1% per year [93]. 

Acute myocardial infarction commonly referred to as heart attack occurs due to prolonged 

ischemia or blocked lumen in the coronary artery which may lead to cell death of about one 

billion cardiomyocytes (CMs) [94]. Necrotic myocardium affects the remodeling activity of the 



www.manaraa.com

 22 

left ventricular. Increase in infarcted area could exert wall stress on the LV causing a significant 

reduction in wall thickness, dilatation and decreased contractile function while prolonged 

increase of the infarction eventually leads to chronic impaired LV [95]. The current treatments 

for chronic cardiac failures are LV assist devices or heart transplants. However, these treatments 

are limited by shortage of organ donors and resources. Therefore alternative therapeutic strategy 

to circumvent this deadly disease is of great need.  

 The challenges involved in myocardial tissue engineering are mainly three-fold. First is 

the ability to closely mimic the tissue microarchitecture specifically complex tissues. Normal LV 

myocardium consists of arrays of organized myocytes stacked in different circumferential 

orientations with a dense muscle mass thickness of approximately 12 mm [96]. The second 

challenge is engineering tissue constructs for cellular organization without compromising 

vascularization or thirdly, building sufficiently thick 3D tissues without risking the oxygen 

diffusion limitation of 200 µm for tissue depth [97].   

 Current strategies for repairing infarcted myocardium include direct injection of healthy 

cells into the infarcted zone; though this is a less invasive delivery, the amount of cell loss is 

huge and poor vascular integration is experienced [98]. Clinical use of biocompatible scaffolds is 

associated with inflammatory response, slow vascularization and selective perfusion [99, 100]. 

Recent applications of cell sheet based therapy from pNIPAAm surfaces seems more promising 

due to the high production of cell density and tailored cell organization, however vascularization 

and perfusion capabilities remain a challenge.  

 Engineered cardiac patches for infarcted heart was developed by seeding layers of CMs 

on thin grafted pNIPAAm surfaces. After few days, the layered CM sheets showed synchronized 

pulsation and adhesive junctions [22-24]. Co-culture of endothelial cells and CMs enhanced 
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neovascularization and angiogenesis in the ischemia hearts of rats [25]. Formation of an 

endothelial cell network improved the CMs survivability in 3D; promoted synchronized 

contraction and enhanced spatial organization by providing controlled gap junction proteins for 

diffusion of nutrients [26]. In attempt to overcome the diffusion limits imposed by insufficient 

thickness, a polysurgery of sequential assembly of ten tri-layer cardiac cell sheet grafts (~1000 

µm thick) was conducted to produce thick vascularized tissues [27]. Though the multi-step 

transplantation of the tri-layer cardiac graft showed significant improvement in vascularization, 

the surgery required 1 or 2-day intervals between transplantation. This lag period and multiple 

transplantation surgeries is not feasible in humans therefore the need for perfuse thicker graft is 

important. 

2.4.5. Congenital Heart Defects 

 Congenital heart defects (HD) is one of the leading cause of prolonged hospitalization of 

newborns after delivery. Though the mortality rates due to congenital HD have declined in the 

United States, the burden of the disease still remains high. Prevalence report indicates an 

estimate of 1% in live births and 1 in every 150 adults are expected to have some form of 

congenital HD [1]. The use of autologous tissues for transplantation will provide an alternative to 

current therapy of organ transplantation that is impinged on availability of donors and could also 

lead to organ rejection or inflammatory response.  Regeneration of these cardiac tissues is 

challenging due to its complex 3D architecture and pertinent electrophysiological function. An 

ideal engineered cardiac tissue should possess the electrical conductivity and contractility 

properties of a normal myocardium to aid proper functioning and lower risks of arrhythmias or 

heart failures.  
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 Recent studies with cell sheet technology show a promising alternative to organ 

transplantation, which could lead to a transformational change in regenerative therapies [2-4]. 

Tissue engineered autologous skeletal myoblasts sheets improved cardiac function in animals 

and even in a Japanese adult male both with different forms of cardiac anomalies [5]. While no 

increase in arrhythmias was observed in those studies, another group reported higher occurrence 

of arrhythmogenicity in their clinical trials [6]. Thus far, great strides are been made with 

pNIPAAm as culture platforms for these engineered tissues. Continuous and further exploration 

of other forms of pNIPAAm surfaces where heart tissues can be regenerated via engineered 

cardiac patches could lead to successful clinical trials.  
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CHAPTER 3: SHAPE-CHANGING HYDROGEL SURFACES TRIGGER RAPID 

RELEASE OF PATTERNED TISSUE MODULES1  

 

3.1. Introduction 

An emerging field known as modular tissue engineering employs a bottom-up approach 

that utilizes tissue building blocks as modular units to construct biological tissues with specific 

architectural features. As an example, modular tissues can be created using cell sheets and 

assembled through stacking of layers to enhance 1 formation of complex microstructural 

functional units such as microvascular networks, thereby augmenting integration and facilitating 

recovery [80, 101-103] . This bottom-up approach aims to develop biomimetic engineered 

tissues that effectively recapitulates native tissues [104, 105].  

Recently, responsive materials have been used as a platform for generating tissue 

modules due to their convenient manipulation of cell-surface interactions on culture supports 

induced by an environmental cue such as temperature, pH, ionic strength, solvent, salt, 

surfactant, electric or magnetic field [8, 106, 107]. In particular, grafted films of poly (N-

isopropylacrylamide) (pNIPAAm), a thermally responsive polymer, have attracted a great deal of 

attention for use as cell culture platforms for cell sheets because this polymer undergoes a sharp 

volume-phase transition due to thermally mediated changes in the hydrophilic and hydrophobic 

                                                

1This chapter have been previously published in Acta Biomaterialia, 2015, 11: 96-103, and have 
been reproduced with permission from Elsevier. Permission is included in Appendix A. 
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interactions around its lower critical solution temperature (LCST) of 32°C [69, 107, 108]. In 

comparison to conventional enzymatic release of cells with trypsin and ethylene diamine 

tetraacetic acid (EDTA), the hydration of grafted pNIPAAm provides a slow, but non-destructive 

approach for tissue harvest so that intact monolayers of cells can be formed [68, 70, 71].  

Rapid production, versatility and scalability are important factors for in vitro construction 

of tissues and organs. Herein, a shape-changing hydrogel cell culture platform that demonstrates 

these properties is described. This platform is based on patterned arrays of microscale 

protrusions (or microbeams) of cross-linked pNIPAAm [19]. Lateral swelling of the microbeams 

occurs upon thermal activation, expanding and distorting the surface of microbeams. Although 

several studies have shown release of tissue modules from two-dimensional (2D) grafted thin 

pNIPAAm films, the release of tissues from shape-changing 3D pNIPAAm hydrogels is 

unexplored. While thin films can be used to generate layered tissues from stacked cell sheets [73-

75, 91, 95, 109], such substrates provide limited range in tissue geometries and slower cell 

release times.  

Hence, developing an alternative method that enables faster cell detachment and allows 

for the fabrication of geometrical patterns of the hydrogel could facilitate the organization and 

rapid release of tissue modules. We hypothesized that rapid tissue module release occurs on 

shape-changing surfaces via mechanical mechanisms that are unique to patterned shape-changing 

cell culture supports. Furthermore, it is speculated this simple method can be used to form the 

diverse building blocks required for building robust multilayered tissues that are complex in 

architecture and may, for example, be used to enhance vascularization in thicker tissue grafts for 

organ repair or replacement. 
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The objective of this work is to demonstrate the feasibility of fabricating and harvesting 

tissue modules via a strain-mediated process and to study the mechanism that regulates rapid 

release from shape-changing biomaterials. We fabricated 3D pNIPAAm microbeams having 

various swelling ratios to investigate the effect of swelling-induced strain on tissue module 

release. We also examined the effect of cell density on cell detachment; and to understand the 

mechanism of tissue release from these shape-changing surfaces, we investigated the roles of 

metabolic activity and cytoskeletal contractility by probing the adhesive interface. Finally, we 

evaluated the viability of cells within the released tissue modules. The results described here 

provide the first steps toward fabricating and harvesting living tissue building blocks with intact 

organization and cell-cell connections that may ultimately be used to build complex 3D tissues 

via assembly of diverse tissue modules. 

3.2. Materials and Methods 

3.2.1. Materials 

NIH/3T3 mouse embryonic fibroblast cells were purchased from the American Type 

Culture Collection. Dulbecco’s modified Eagle’s medium (DMEM), Dulbecco’s phosphate 

buffered saline (DPBS), newborn calf serum (NCS), 0.25% trypsin EDTA (1X), Calcein AM, 

ethidium homodimer, penicillin and streptomycin were all obtained from Life Technologies. N-

isopropylacrylamide (NIPAAm), 2-dimethoxy-2-phenylacetophenone (DMPA), N, N’-

methylenebisacrylamide (MBAm), 3-(trichlorosilyl) propyl methacrylate (TPM), sodium azide 

(NaN3), Rho-associated protein kinase (ROCK) inhibitor Y-27632, acetone, and carbon 

tetrachloride were all purchased from Sigma-Aldrich. Methacryloxyethyl thiocarbonyl 

rhodamine B (polyfluor® 570) was purchased from Polysciences. 3,3´-dithiobis-
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sulfosuccinimidylpropionate (DTSSP) was obtained from Thermo Scientific. Silicone elastomer 

(PDMS) kits (Sylgard®184) were obtained from Dow Corning. 

 

   

Figure 3-1: Shape-changing pNIPAAm hydrogel microbeams for tissue module. (A) Schematic 
of microbeam fabrication steps. (1) A PDMS template is placed on a methacrylated coverslip and 
(2) prepolymer solution is flowed into the recesses. (3) The hydrogel networks are polymerized 
with 350 nm UV light before the PDMS template is removed. (B) Three-dimensional 
reconstructions from z-stacks of images taken by confocal microscopy of a surface-confined 
microbeam of low aspect ratio (AR = 0.5) with a collapsed (37 °C) height of 25 µm and width of 
50 µm (left) which transforms into a bulbous geometry (right) upon thermally intitated shape 
change at 27 °C. Note microbeams with AR < 1.0 were used in this study. (C) Schematic of 
formation and release of tissue modules from shape-changing hydrogel microbeams. (1) Cells 
adhered to and conformed to the shape of the microbeams, organizing into geometric tissue 
modules. (2) Tissue modules released from microbeams upon expansion beyond a critical lateral 
strain. 
 

3.2.2. Preparation of Dynamic pNIPAAm Hydrogel Arrays  

 Patterns of crosslinked pNIPAAm hydrogel (50-100 µm width x 25 µm height x 5 mm 

length) microbeams were fabricated as described previously [19, 110] on 22 mm x 22 mm glass 
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coverslips (#1.5) using PDMS molds by employing the micromolding in capillaries (MIMIC) 

technique (Figure 3-1A). Briefly, the glass cover slip was surface modified with TPM in carbon 

tetra chloride. 1-4% MBAm crosslinker (5 mg/mL), 10% DMPA photo initiator (20 mg/mL) and 

1% polyfluor® 570 (0.5 mg/mL) were added to a 250 mg/mL solution of NIPAAm  in acetone. 

The resulting solution was introduced to the PDMS molds and polymerized with ultraviolet light 

(350 nm) for 4 minutes. The fabricated surfaces were sequentially rinsed with acetone, ethanol 

and water to remove unpolymerized monomer.  

3.2.3. Cell Culture 

 NIH/3T3 mouse embryonic fibroblast cells were cultured in 10% NCS growth medium 

containing 1% antibiotics (10,000 units/mL penicillin and 10,000 units/mL streptomycin) at 37 

°C in a humidified atmosphere of 5% CO2. To prepare tissue modules, trypsinized fibroblasts 

were seeded onto the fabricated responsive hydrogel arrays at a density of 500 - 750 cells/mm2 

and cultured at 37 °C until confluence (24 - 48 h). Studies of release from low cell density (100 

cells/mm2) were cultured for 24 hours. 

3.2.4. Release of Tissue Modules from Shape-changing Hydrogels 

Rapid release of tissue modules was induced by thermally initiated swelling of the 

hydrogel beams. 2 mL of cold PBS (4 -10°C) was introduced 1 mL at a time into the seeded dish 

containing 2.5 mL of 37 °C medium resulting in cooling to approximately 27 °C. Cell release 

was monitored via time-lapse image acquisition on a microscope for at least 70 seconds.  

3.2.5. Viability of Cells Released  

A cell viability assay was performed on released cells by using a LIVE/DEAD kit 

(containing calcein AM and ethidium homodimer) following the commercially recommended 

protocol. Once the cells reached confluence on the hydrogel, the tissue modules were released 
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with fresh cold medium and plated onto a new tissue culture polystyrene (TCPS) dish. Following 

incubation for 24 or 48 hours at 37 °C, the cells were stained with 300 µl of 20 µM Calcein AM 

and 40 µM ethidium homodimer-1 solution. After 30 min, the dish was rinsed twice with warm 

PBS and replenished with fresh medium prior to imaging.  

3.2.6. Mechanism of Tissue Module Detachment Studies 

The mode of cell release from hydrogel surfaces was examined by separately treating 

seeded samples with agents that modulate metabolism, contractility or adhesion. 24 hours after 

after attachment to microbeams, cells were exposed to sodium azide, a compound known to 

block ATP production via inhibition of cytochrome C oxidase in mitochondoria [68, 111], Y-

27632, a selective inhibitor of Rho-associated protein kinases [112, 113], or DTSSP, a 

homobifunctional crosslinker that fixes only integrins bound to the extracellular matrix [114, 

115]. Briefly, samples were exposed to 2 mM sodium azide for 60 minutes or 50 µM Y-27632 or 

2 mM DTSSP for 30 minutes prior to initiating tissue module release. To investigate the effect of 

surface strain on attached cells, the concentration of the network crosslinker (MBAm) in the 

prepolymer solution was varied from 1 to 4% before MIMIC processing. The one-dimensional 

width-wise strain in each microbeam was calculated from phase contrast micrographs as follows:  

𝜀 = ∆!
!!"##$%&'(

= !!"#$$%&!!!"##$%&'(
!!"##$%&'(

       (1) 

where ε is the Cauchy strain, wcollapsed is the width of the hydrogel beam in the collapsed state and 

wswollen is the width of the hydrogel beam in the swollen state. Cell detachment was calculated as 

the percent of cells released from the microbeams within 3 minutes after thermal stimulation. 
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3.2.7. Microscopy 

Video analysis (60 frames per second) and micrographs of samples were obtained using 

an Eclipse Ti-U (Nikon Instruments, Japan) fluorescent microscope equipped with a CCD 

camera (CoolSNAP HQ2, Photometrics, Tuscon). Cell images were analyzed with NIS-Elements 

advanced research software Ver. 4.20 (Nikon Instruments) and cell counting were performed in 

ImageJ (NIH, USA). Images were processed to overlay fluorescent channels on the phase-

contrast channel for LIVE/DEAD analysis. 

To capture x-y-z image stacks for 3D rendering of the microbeams, images were taken 

with a Leica TCS SP5 confocal laser scanning microscope (CLSM) equipped with 20X/0.7NA 

and 40X/1.25NA objectives (Leica Microsystems, Germany). An argon laser line, tuned to 543 

nm, was applied to excite fluorescent microbeams and an Acousto Optical Beam Splitter was 

used to filter the emission. Image sections were taken at a constant z-spacing of 0.25 µm and 

were captured with photomultiplier detectors using the Leica Application Suite Advanced 

Fluorescence software version 2.1.0 (Leica Microsystems, Germany). 

3.2.8. Statistical Analysis  

Release data was collected with a sample size of n ≥ 5 independent experiments for each 

case and reported as scatter plots. Statistical differences between treatment types were 

determined by performing a single factor ANOVA followed by Tukey’s test for pairwise 

comparisons with p < 0.05 considered a significant difference. 

3.3. Results 

3.3.1. Surface-confined Stimuli-responsive Microbeams Swell Anisotropically  

Shape-changing microbeams were fabricated by MIMIC and photopolymerization 

(Figure 3-1A). This process has previously been used to generate a range of initial geometries 
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and reversibly deforming structures [19]. For this investigation, rectangular prismatic 

microbeams with aspect ratios 0.25 to 0.5 were used to generate laterally straining surfaces in 

response to thermal activation. Under cell culture conditions at 37 oC, the microbeams were 

collapsed polymer networks forming a stable topography suitable for culturing cells. Thermal 

reduction of the aqueous medium to 27 oC caused swelling of the surface-confined microbeams. 

Covalent attachment to the underlying substrate prevented expansion of the microbeams adjacent 

to the surface and resulted in anisotropic shape changes. The crosslink density in the hydrogel 

determined the extent of swelling; increasing the concentrations of the crosslinker reduced 

swelling and therefore retarded the lateral strain.  

3.3.2. Rapid Tissue Module Release via Surface Expansion of Shape-changing Surfaces 

Model tissue modules were formed from interconnected mouse embryonic fibroblasts by 

seeding these cells at high density (500 cell/mm2) onto arrays of microbeams crosslinked with 

1% MBAm (n = 5) (Figure 3-1C). Seeded cells formed continuous multicellular monolayers that  

 

 

Figure 3-2: Phase contrast images of tissue modules. Shown are before (left) and after (right) 
microbeam expansion. (A) High cell density (ε = 0.33) and (B) low cell density (ε = 0.31) were 
compared for similar strains. Scale bars = 100 µm. 
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conformed to the microbeam’s shape within 48 hours. Cells were observed to populate the top 

surface of the microbeams and the recessed spaces between the beams (Figure 3-2C).  

The shape-changing property of these surface-confined microbeams was investigated as a 

method to harvest the attached tissue modules without disrupting their intercellular connections 

and organization. Thermal activation of these dynamic hydrogel arrays triggered rapid release of 

tissue modules following swelling-induced shape changes. Upon introduction of cold medium to 

reduce the temperature, the projected area of each microbeam increased as expansion occurred in 

the width-wise direction. Simultaneously, the confluent cells detached in aggregate from the 

microbeams as continuous tissue stripe modules (Figure 3-2A). Cell to cell connections in the 

released tissue modules appeared to remain intact while cells between the microbeams 

maintained attachment to the glass surface after the change in temperature. Release occurred 

rapidly as separation was observed within a few seconds of reducing the medium temperature to 

approximately 27 °C. Complete detachment of the overlying tissue was observed in less than 3 

min.  

3.3.3. Effects of Cell Density on Tissue Module Release  

Cell to cell connections were found to be a requirement for inducing confluent cell stripes 

to release from shape-changing hydrogel surfaces. For low cell density, 100 cells/mm2 were 

seeded on microbeams (n = 5) (Figure 3-2B) and compared to high cell density samples (500 

cells/mm2) with the same crosslink density (Figure 3-2A). Cells seeded at low density were 

predominantly adhered individually to the microbeams with cells interacting with very few 

neighboring cells after 24 hours of culture. Upon reducing the culture temperature, minimal 

detachment of cells was observed from low cell density microbeams (Figure 3-2B). In contrast, 

complete detachment of continuous tissue modules occurred within seconds to minutes when the 
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cells were connected atop the microbeams. A significant difference in the number of detached 

cells was observed between the high and low cell densities at 4 minutes after expansion (p < 

0.001). The microbeams in these experiments were exposed to equal thermal stimuli and 

underwent similar lateral strains, indicating that the rapid release requires cell-to-cell connections 

and that the reduction in temperature alone does not induce tissue module release.  

3.3.4. Mechanism of Tissue Release from Shape-changing Microbeams  

Based on the cell density results, it was hypothesized that a mismatch between the 

expanding surface and the allowable stress or strain in the tissue module caused the detachment 

of interconnected cells. To determine the mechanism of detachment from the shape-changing 

microbeams, the mode of release was examined using four approaches. First, the degree of 

swelling of pNIPAAm hydrogels is dependent on the extent of available network crosslinks; 

increasing crosslinks reduces swelling. The concentration of MBAm crosslinker in the 

prepolymer solution was varied from 1 to 4%, which resulted in microbeams whose surface 

expansion caused a range of lateral strain, ε, from 0.05 to 1.2 (i.e., 5-120% increase in width). 

Cells seeded at high density formed morphologically similar tissue modules on all crosslinked 

hydrogel microbeams. Upon swelling, it was observed that lateral strain strongly regulated tissue 

release. Cells remained adhered and spread on microbeams with low strain; however, intact 

tissue modules were released above a threshold lateral strain of approximately 0.25 (p < 0.001) 

(Figure 3-3 & 3-4a). 

Next, the role of processes requiring cellular metabolism for cell detachment were 

examined by treating the tissue modules with sodium azide [111], a potent inhibitor of ATP 

production, prior to microbeam swelling. Less than 20% of the cells detached when ε < 0.25 

while more than 90% cell detachment was observed for ε > 0.25 (Figure 3-3 & 3-4b). This trend 
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was similar to untreated samples, indicating that inhibiting metabolic processes did not prevent 

cell release (p < 0.001). 

Since it was hypothesized that the mismatch between compliance of the tissue modules 

and the underlying surface expansion may disrupt the adhesive interface and lead to release, 

intracellular tension was modulated. Actin-myosin contractility was inhibited with Y-27632 prior 

to microbeam swelling. It was observed that the cells primarily remained attached even after 

inducing large strains (ε > 0.25), implying that contractility is required for rapid tissue module 

detachment (Figure 3-3 & 3-4c). Moreover, instead of releasing from the surface, the 

contractility-inhibited cells expanded with the swelling surface. 

Finally, attached cells were treated with DTSSP, a chemical crosslinker with a 12 Å 

spacer arm length which specifically crosslinks integrin receptors bound to extracellular matrix 

ligands [114, 115]. In this case, significant cell release was not observed within 5 minutes of 

initiating shape change, indicating that the disruption of integrin-mediated adhesion is required 

for release (Figure 3-3 & 3-4D). Together, these results suggest a mechanical mechanism 

triggers rapid tissue module release that is mediated by the lateral strain of the cell-surface 

interface provided by the shape-changing properties of the patterned, surface-confined hydrogels. 

3.3.5. Strain Induced Release Does Not Reduce Cell Viability 

To examine the fate of cells within released tissue modules, the multicellular stripes were 

harvested via lateral strain (ε > 0.30) and allowed to re-attach to tissue culture polystyrene 

(TCPS). Cell survival was observed over 48 hours. After 24 hours on TCPS, the organization of 

the tissue module was generally lost as the morphology became a loose aggregate of spreading 

cells, as expected for fibroblasts on TCPS (Figure 4-5A). After 48 hours, the cell number and 

area further increased (Figure 3-5B). A LIVE/DEAD viability assay indicated that the majority 
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(~94%) of the harvested and reattached cells remained viable after release from the shape-

changing microbeams (Figure 3-5).   

3.4. Discussion 

The goal of this study was to demonstrate the feasibility of detaching cells from shape-

changing surfaces and to investigate the mechanism of release. Toward this goal, we engineered 

surface-confined hydrogel structures that swell anisotropically when stimulated; in this case, 

when the environment drops below the transition temperature. Micromolding was used to form 

these structures because it is amenable to parallel fabrication of patterned structures with diverse 

geometries and lateral dimensions spanning micrometers to centimeters on the same array, 

thereby greatly expanding the range of possible tissue module shapes and scales beyond what is 

currently possible. For this study, rectangular beams were used to create cell stripes which 

facilitated the investigation of module release. Other tissue module geometries that have been 

fabricated include arbitrary 2D shapes as well as thin lines and arcs [110].  

Fibroblast-based tissue modules with defined geometries formed spontaneously when 

cells were seeded at high density atop the patterned arrays. Once formed, the harvest of these 

tissue modules to enable subsequent processing or modular assembly was investigated. Release 

of tissue modules from pNIPAAm hydrogel microbeams occurred within seconds and was 

completed within 3 minutes after lowering the culture temperature to 27 °C as long as there were 

cell to cell connections present and the lateral strains exceeded 25%. This 25% strain minimum 

was found to be a threshold for triggering release of fibroblast-based tissue modules. An obvious 

comparison to this surface strain effect is cyclic stretching of cells on elastic substrates. Studies 

using these experimental systems do not report instantaneous cell release; however, uniaxial 

stretch is typically less than 20%, designed to mimic physiologic strains [115]. Unlike enzymatic 
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detachment techniques, the tissue modules released as single entities while unconnected 

individual cells remained attached to the microbeams. Decreasing the density of cells attached to 

the shape-changing microbeams significantly reduced cell release even after inducing large strain 

(≥ 50%). In contrast, cells seeded at high density to form confluent tissue modules detached 

rapidly and completely from microbeams subjected to similar laterals strains. These results show 

that the release of the cells depended on the cohesive support from neighboring cells suggesting 

that intercellular tension may play a significant role. This observation led to an in depth 

investigation of the mechanism that regulates rapid tissue module release from these shape-

changing surfaces.  

Importantly, the thermal stimulus used to actuate the pNIPAAm hydrogel was not the key 

factor in achieving rapid cell release from the shape-changing microbeams. When the amount of 

crosslinker was varied in the hydrogel network, the extent of bulk swelling and therefore surface 

expansion was modulated. It was observed that lateral strain greater than 25% was required to 

initiate confluent tissue module detachment despite all modules being exposed to the same 

temperature reduction (~10 °C). Thus, the mechanism of rapid release from shape-changing 

pNIPAAm hydrogels appears to be dominated by mechanical expansion of the surface rather 

than a change in temperature or hydrophobicity.  

A few examples of using stimuli-responsive materials to release cells from surfaces have 

been successful. Most notably, work pioneered by Okano et al. in the early 1990’s focused on the 

use of thin (~30 nm), grafted pNIPAAm films for cell sheet growth and release [69, 86, 116-

122]. They observed that upon lowering the culture temperature below the demixing temperature 

(~32 °C), cell sheet lift-off occurred in response to the shift in physicochemical properties; 

specifically the transition of pNIPAAm from a hydrophobic state to a hydrophilic one [68]. 
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However, this technique requires the temperature to be reduced to between 4 - 20 °C to trigger 

cell release [68, 116, 118]. Furthermore, the release from these surfaces typically takes 15 to 90 

minutes raising concerns regarding long-term cellular biochemical disturbances and viability. 

Extended exposure of cells to low temperature, or hypothermic, environments can significantly 

impact cellular functions such as transcription, translation, metabolism, and cytoskeletal 

rearrangement [123-125]. When the mechanism of cell sheet lift-off was investigated, it was 

found that detachment from grafted pNIPAAm surfaces was reduced by approximately 50% in 

the presence of sodium azide [68], suggesting that metabolically driven processes are a key 

aspect to cell release from these surfaces. Additionally, both the depolymerization and 

stabilization of actin filaments reduced cell sheet detachment indicating that actin dynamics also 

plays an important role [28]. Based on these findings, it was proposed that cell detachment from 

grafted pNIPAAm surfaces due to a thermally induced shift in material properties was a two-step 

process: first, a passive detachment step which is a result in the change in the surface interactions 

between the pNIPAAm layer and the cell-matrix construct, and second, a metabolically active 

detachment step which requires cytoskeletal reorganization and intracellular signal transduction 

[28]. Thus, an alternative release technique that requires only a small temperature shift, or other 

harmless stimulus, to trigger tissue module detachment in only seconds is desirable; however 

such an approach would have to rely on a radically different mechanism of release.  

In an effort to achieve faster release, another group demonstrated the release of an intact 

cell sheet from a different thermosensitive hydrogel, Tetronic-tyramine [126]. Release from this 

surface takes only 10 minutes, but a thermal shift from 37 °C to 4 °C is required. To control or 

accelerate cell detachment from pNIPAAm surfaces, others have altered the 



www.manaraa.com

 39 

hydrophilic/hydrophobic content of pNIPAAm by co-grafting with hydrophilic moieties or used 

approaches such as serum free media to completely recover attached cells [127-130].  

 

 

Figure 3-3: Surface strain regulates tissue detachment from pNIPAAm microbeams. Untreated, 
sodium azide (NaN3), Y-27632, or DTSSP treated tissue modules were subjected to a range of 
lateral strain on shape-changing microbeams. Each data point represents one experiment. The 
vertical dashed line indicates the 25% strain threshold for releasing untreated tissue modules.  
 
 

For the tissue modules formed on pNIPAAm microbeams, reducing metabolic activity by 

treatment with sodium azide had no detectable impact on tissue module detachment, in contrast 

to grafted pNIPAAm surfaces. Rather, the results suggest that the mechanism for detachment is 

strongly related to the degree of lateral strain from the anisotropic swelling of the hydrogel 

microbeams. It is noted that no significant lateral strain occurs in thin grafted pNIPAAm films. 

We thus hypothesized that this strain-dependent release occurs because the contractile forces 

within tissues and the stretching forces of the expanding surface were greater than the adhesion 
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forces, and consequently mechanical failure occurred at the interface between the cells and the 

surface bound matrix, resulting in detachment.  

 

 

Figure 3-4: Phase contrast images of tissue modules before (left) and after (right) microbeam 
expansion (~3 min). (A) Untreated, ε = 0.35; (B) sodium azide (NaN3), ε = 0.50; (C) ROCK 
inhibitor (Y27632), ε = 0.59 and (D) integrin crosslinked (DTSSP), ε = 0.71 treatments are 
shown. Arrows indicate detached tissue stripes. Scale bars = 100 µm. 

 

To test this hypothesis, attached tissue modules were treated with Y-27632, an inhibitor 

of the p160ROCK Rho-associated protein kinase mediated actin-myosin contractility, or DTSSP, 

a homobifunctinal crosslinker that only links integrin receptors that are bound to their 

extracellular ligand. Both prevented tissue module detachment for all strains tested (Figure 3-3 

and 3-4) suggesting that the mechanical behavior of the tissue plays a significant role in 

detachment [114, 131]. Image analysis of cells on swollen microbeams after treatment with Y-

27632 showed that cells deformed with the surface as the strain was applied indicating greater 

compliance to stresses generated by the expansion of the underlying surface. Similarly, 
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examining the DTSSP-treated samples showed cells with crosslinked adhesion receptors 

remained attached to the microbeams under large strains indicating that release most likely 

occurs by breaking integrin-matrix adhesions. This is consistent with previous reports that 

indicate at least some of the extracellular matrix is retained on pNIPAAm surfaces after cell 

release [11, 71].  

  

Figure 3-5: Phase contrast and fluorescence micrograph overlays of cells. (A) 24 hours and (B) 
48 hours after release from pNIPAAm microbeams and precipitatation onto TCPS. Green 
indicates live cell staining (calcein AM, left) and red indicates dead cell staining (ethidium 
homodimer, right). 
 

Together, these results reveal that the release of geometrically patterned tissue modules 

from shape-changing hydrogel arrays occurs within seconds via a critical strain of the 

microbeams. Cell-to-cell junctions and cytoskeletal tension are required for complete 
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detachment, and the separation occurs by disrupting adhesions between the fibroblast and the 

extracellular matrix. These findings support a novel mechanical release mechanism whereby 

strain disrupts the cell-matrix adhesive interface because inter- and intra-cellular tension prevents 

expansion of the tissue module with the swelling surface. 

Finally, the small (≤ 10 °C) and brief (≤ 3 minutes) thermal shift of the culture media and 

the mechanical strain imposed on the tissue modules had minimal effect on cell integrity. 

Though some cells could have been lost during the transfer, a qualitative viability study 

following release showed that cells in large aggregates survive, adhere, spread and appeared to 

proliferate over 48 hours indicating that the rapid cooling and expansion of the support are not 

detrimental. Thus, the mechanically-driven mechanism for tissue module detachment from these 

shape-changing biomaterials is promising as it allows for rapid release without enzymatic 

digestion or extended hypothermic incubation steps, thereby preserving cell health and cell-cell 

connections. Additionally, it enables the exploration of harvesting tissue building blocks for 

assembly into complex 3D tissues. 

3.5. Conclusion 

A purely mechanical, strain-based mechanism of detaching intact tissue modules from 

patterned arrays of shape-changing hydrogel structures was demonstrated. The fabricated 

microbeams release cells organized into geometric tissue modules via large lateral strains 

utilizing the surface-confined hydrogel’s anisotropic swelling properties. This mechanically 

induced method of rapid release is unique in comparison to thermally responsive films and 

coatings, and we believe is demonstrated for the first time. It is proposed that this mechanism 

could easily be extended to a variety of shape-changing material surfaces which would allow for 

controlled and rapid release initiated by stimuli other than temperature, thus providing enhanced 
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flexibility in the design of future tissue engineering platforms. This novel approach establishes a 

rapid method for recovery of tissue modules in an efficient manner which may be applicable for 

the modular, bottom up construction of tissues for organ models and regenerative therapies.  
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CHAPTER 4: MICRO-CONTACT PRINTING OF TISSUE PRECURSORS VIA 

GEOMETRICALLY PATTERNED SHAPE-CHANGING HYDROGELS 

 

4.1. Introduction  

In vitro tissue engineering could provide the needed breakthrough in engineering 

complex tissue structures such as the myocardium by allowing the construction of viable tissues 

to aid optimum nutrients and oxygen supply upon implantation.  Current tissue printing 

approaches include inkjet and extrusion-based bioprinting technologies. Thermal or piezoelectric 

inkjet printers utilize heat or shear forces at the printhead nozzle, which could impair cell 

functionality and cause reduction in cell populations [53, 132, 133]. Although emerging studies 

are being conducted to improve cell survival but maintaining adequate cellular functionality and 

organization remain a challenge. The extrusion-based bioprinting techniques utilizes a “bio-ink” 

particle deposition method which incorporates either a cylindrical or spherical multicellular 

aggregates of specific composition and arrangements to aid printing of cells in a more 

physiological relevant environment by employing tissue fusion and cell sorting mechanisms [56, 

57, 134, 135].  The use of cell suspension or hydrogel cell-laden in this approach creates 

additional intermediates that may impede productivity and also add cost to the preexisting cost-

intensive printers. Moreover, these two printing approaches may be limited in terms of 

scalability, versatility and rapidity. An alternative approach to these two printing techniques is 

the self-assembly fabrication methods designed with stimuli responsive surfaces.  
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 Recently, Okano and others have developed a tissue fabrication method whereby cells are 

assembled into sheets by a cell sheet manipulator technique using a temperature responsive 

polymer, poly-N-isopropylacrylamide (pNIPAAm) [84, 136]. Their technique have demonstrated 

the feasibility of constructing functional and transplantable thick tissues and have made 

remarkable advancement to promote provision of functionalize vasculatures [80, 89, 137], 

however the vascular supply is insufficient as the restraint of blood flow in vivo still remains 

tenuous. Herein, we demonstrate an alternative method to assembly of cells by employing the 

micro-contact printing technique.   

 Micro-contact printing (µCP) technology was developed over two decades ago for spatial 

patterning of gold onto surfaces at micron length scales [138].  However, this technique has since 

proven invaluable for patterning functionalization of biological relevant materials onto substrates 

to promote tailored cell adhesion. Researchers have printed single or multiple sized islands of 

self-assembled monolayers (SAMs) to promote adsorption of cell adhesive ECM proteins 

whereby cells are seeded onto to provide binding specificity to those locations [36, 139].  To our 

knowledge, µCP of cells directly onto substrates has yet to be illustrated to date.  For the first 

time, we adapt the µCP technology to direct printing of live cells and demonstrate how viable 

tissues can be constructed in an attempt to design tissue constructs that could address the limited 

nutrient and oxygen supply challenges in tissue engineering. Though, vascularization studies 

would need to be conducted to demonstrate this ambitious goal, however this study elicits the 

basis. Previously, we demonstrated that attached tissue modules on shape-changing three-

dimensional (3D) pNIPAAm hydrogel arrays are detached via a strain-mediated process [23]. In 

this study, we hypothesize that the combination of the shape changing hydrogel and µCP 

technique provides a reliable method in assembly of cells for use as a stackable device for 
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fabrication of functional tissue modules. To test this hypothesis, our objective is to show the 

feasibility of the contact printing process and the viability of the resulting tissues transferred. We 

first cultured fibroblasts on fabricated 3D patterned pNIPAAm hydrogels and then investigated 

the effects of contact printing on transferred tissues i.e. stamp force analysis, cell alignment and 

cell viability. We next examined the effects of cell adhesion promoters on target printing surface. 

Finally, we evaluated the metabolic activity of the cells printed. This study demonstrates 

promising results that could transform the field of in vitro tissue engineering.  

4.2. Materials and Methods  

4.2.1. Materials 

NIH/3T3 cells were purchased from American Type Culture Collection. Dulbecco’s 

Modified Eagles Medium (DMEM), Dulbecco’s Phosphate buffered saline (DPBS), newborn 

calf serum (NCS), 0.25% trypsin EDTA (1X), penicillin, streptomycin, Calcein AM, ethidium 

homodimer, Alexa Fluor® 546 phalloidin, Hoechst 33342, goat anti-rabbit IgG secondary 

antibody and human plasma fibronectin were all from Life Technologies. N-isopropylacrylamide 

(NIPAAm), 2-dimethoxy-2-phenylacetophenone (DMPA), N, N’-methylenebisacrylamide 

(MBAm), 3-(trichlorosilyl) propyl methacrylate (TPM), acetone, carbon tetrachloride, Triton X-

100, formaldehyde, sodium azide (NaN3) and poly-l-lysine were all purchased from Sigma-

Aldrich.  Tissue culture polystyrene (TCPS) dish was obtained from Fischer Scientific. 

Methacryloxyethyl thiocarbonyl rhodamine B (polyfluor® 570) was purchased from 

Polysciences. Silicone elastomer (PDMS) kits (Sylgard®184) were obtained from Dow Corning. 

Bovine collagen type 1 was obtained from Advanced BioMatrix. Anti-integrin Alpha 5 antibody, 

AB1928 was purchased from Merck Millipore.  
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4.2.2. Geometrical Patterned Shape-changing Hydrogel Preparation 

Geometrical patterning of the shape-changing hydrogel arrays was fabricated as 

described previously [19, 23] using soft lithography. The resulting array dimensions had width 

spacing of 50, 75 or 100 µm covalently bound to a glass coverslip (22 mm x 22 mm). 

 In preparation for cell culture, the hydrogel arrays were coated with 50 µL of 0.1 mg/mL 

poly-l-lysine (PLL) for 5 minutes followed by a rinsing step in DPBS and then ambient drying in 

the biosafety hood for at least 2 hours. 

4.2.3. Cell Culture 

 C2C12 skeletal myoblasts and NIH/3T3 mouse embryonic fibroblast cells were cultured 

in 15% or 10% NCS growth medium respectively, 84% or 89% DMEM and 1% antibiotics 

(10,000 units/mL penicillin and 10,000 units/mL streptomycin) at 37 °C in a humidified 

atmosphere of 5% CO2.  

 To prepare tissue precursors, trypsinized cells were seeded onto the fabricated shape-

changing hydrogel arrays at a density of 500 -750 cells/mm2 and cultured at 37 °C until 

confluence. 

4.2.4. Micro-contact Printing Process 

Initiation of tissue printing occurs once cells seeded on the arrays have reach confluence, 

either 24 or 48 hours. The arrays are inverted like ink stamps and are placed on top of a target 

surface to transfer the attached tissues (Figure 4-1). Prior to printing, the target surface, a glass 

coverslip is coated with either of these three cell adhesion molecules (CAM); 10 µg/mL of 

human plasma fibronectin for 30 minutes, 100 µg/mL of bovine collagen type I for 3 hours, or 

0.1 mg/mL of PLL for 5 minutes all at room temperature. To enable conformal contact to the 

target surface, a compressive load is applied to the back of the stamp. The sample is then 



www.manaraa.com

 48 

incubated at 37°C for 15 minutes and immediately placed in a 4°C environment for 5 minutes to 

initiate the release and printing of the tissues. Finally, the stamp is gently detached from the 

target surface leaving behind the tissues.  

 

    

Figure 4-1: Schematic illustration showing the formation and release of tissue precursors (from 
shape-changing hydrogel micro arrays). Cells adhered to and conformed to the shape of the 
arrays, organizing into geometric tissue modules. Tissue precursors are then released from micro 
arrays upon expansion beyond a critical lateral strain of 25%. 
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4.2.5. Stamp Force Analysis  

Compressive force analysis was determined as the amount of pressure applied to the 

hydrogel arrays (stamp) necessary to induce printing onto the target surface.  To establish the 

optimum load required, calibration weights in 20g, 10g, 5g, 2g or 1g were independently applied 

to the backside of the stamp while in contact to the target to mate the two surfaces. The 

corresponding compressive pressure of each calibration weight on a 50 µm microbeam width 

stamp is 0.71, 1.45, 3.55, 7.10, 14.5 psi respectively. After a duration of 5 minutes at 4 °C, the 

load and stamp were removed and viability of the printed cells was examined.  

4.2.6. Cell Viability Assay 

Viability of printed cells was determined by using a LIVE/DEAD kit following the 

commercially recommended protocol. Briefly, cells were incubated in 200 µL of 20 µM Calcein 

AM and 40 µM ethidium homodimer-1 solution. Then the cells were rinsed twice with DPBS 

after 30 minutes and re-incubated in fresh serum containing medium prior to imaging. 

4.2.7. Immunofluorescence Staining for Focal Adhesion Components 

Printed tissue precursors were fixed in ice cold 3.7% formaldehyde for 5 minutes 

followed by permeabilization and stabilization of cytoskeletons (CSK) in ice cold CSK buffer 

with Triton X-100 for 10 minutes. Then a blocking buffer composed of 5% NCS and 0.01% 

NaN3 in complete DPBS was used to block nonspecific adsorption for at least 1 hour. The 

sample was labeled with a primary antibody, polyclonal rabbit anti-integrin alpha 5 antibody 

diluted in blocking buffer at 1:100 for 1 hour, washed thrice with DPBS for 5 minutes each. 

Then incubated in goat anti-rabbit IgG secondary antibody conjugated with Alexa Fluor ® 488, 

Hoechst, phalloidin Alexa Fluor ® 568 diluted in blocking buffer for 1 hour at 1:100, 1:2000 and 
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1:50 dilutions respectively.  Samples were rinsed three times with DPBS and twice with 

deionized water, sealed with mounting media, and then imaged. 

 

 

Figure 4-2: Viability of fibroblasts transferred from shape-changing hydrogel (different applied 
pressure ranging from 1 to 20 g weights). A: Fluorescence micrographs of fibroblast viability. 
Dead cells (red) and Live cells (green stain). B: Effects of applied pressured on cell viability. 
Bars represents standard error (SE) (n >3). Scale bar = 200 µm. 
 

4.2.8. Cell Alignment and Orientation Analyses 

Cell orientation of the printed tissue precursors and control samples were performed 

using ImageJ v1.49s (NIH, USA) with a sample size of n ≥ 3. The angle between the cell 

morphology and the longitudinal direction of the micro array was measured. For the control 

samples (cells on non-patterned arrays), this angle was between the minor and major axis of the 

cells. The percentage of aligned cells was analyzed from the measured orientation distribution by 

using Excel Analysis toolpak.  Cell alignment was determined as the average amount of cells 
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oriented within ± 20° of the preferred angle of orientation i.e. longitudinal axis of the hydrogel 

array. 

4.2.9. Fluorescence Imaging and Analysis 

Prepared samples were examined at ambient temperatures under a fluorescence 

microscope, Eclipse Ti-U (Nikon Instruments, Japan). The resulting cell images were then 

analyzed with NIS-Elements advanced research software Ver. 4.20 (Nikon Instruments) or 

Image J (NIH, USA).  

4.2.10. Statistical Analysis  

Pair-wise comparisons for cell viability, alignment and orientation data were performed 

using the two-tailed Student’s t-test with n ≥ 3, where p < 0.05 were considered statistically 

significant. 

4.3. Results  

4.3.1. Compressive Pressure Applied During Printing Affects Cell Viability  

Viability of the printed tissue precursors were found to be predominantly correlated with 

the amounts of compressive pressure applied during printing.  Cell survival was observed after 

24 hours of printed tissues on polylysine coated target surfaces. To examine the adequate 

amounts of pressure necessary to print tissue modules, cells seeded on the shape-changing 

structures were subjected to pressures ranging from 0.71 to 14.5 psi and viability of the cells 

after transfer was analyzed. Calibration weights of 1-g, 2-g, 5-g, 10-g and 20-g were used to vary 

the amounts of pressure. A LIVE/DEAD viability assay determined that the lowest amount of 

pressure applied resulted in the most viable cells (~83% ± 3) of the (Figure 4-2). The number of 
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dead cells decreased as the amount of pressure applied was systematically reduced. A plot of the 

measured viable cells shows a power series regression model with an R-squared value of 95.9%.  

4.3.2. Effect of Micro-contact Printing on Cell Adhesion Molecules Adsorbed Target 

Surfaces 

 Printing on target surfaces adsorbed with collagen type 1, fibronectin and polylysine did 

not show any statistical difference in cell viability.  Viability of printed tissue precursors was 

reduced by 11, 22, and 7% for collagen, fibronectin and polylysine respectively in comparison to 

the control samples. Negative control consists of cells printed on plain glass surface and no cell 

transfer was observed to such surface while a positive control that include cells cultured on plain 

glass showed the highest number of viable cells. A single factor ANOVA test indicate a P > 0.05  

 

 

Figure 4-3: Viability of fibroblasts printed on cell adhesion promoters adsorbed target surfaces. 
A: Fluorescence images of printed tissue precursors on collagen, fibronectin and poly lysine 
surfaces. Dead cells (red) and Live cells (green stain). B: Positive control sample. Cells are 
seeded on plain glass coverslips. C: Bar charts representing the percentages of viable cells on the 
coated target surfaces. Bars represent standard deviation +/- 5 (SD) (n =3). Scale bar = 100 µm. 
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indicating no significant difference between the means. For subsequent printing, polylysine was 

selected as the CAM of choice for all target surfaces due to the ease of use and stability at 

ambient temperature. 

 

 

Figure 4-4: Structural components of fibroblast before and after printing with shape-changing 
hydrogel. Fluorescence micrographs of actin filament, nuclei and α5 integrin A: After 2 hours of 
cell seeding on TCPS. B: Images of tissue precursors after 1 hour post printing. C: Printed 
fibroblasts showing formation of actin filaments, focal adhesion complexes and nuclei after 2 
hours post printing. Cell nuclei (blue) were stained using Hoechst, actin filaments were stained 
with AF 568 phalloidin (red) and α5 integrin were stained using polyclonal ab1928 (green). Scale 
bar = 50 µm. 
 

4.3.3. Printed Tissue Precursors Reveal Preserved Focal Adhesion Components 

To assess cellular morphology and metabolic activity, we compared printed cells to cells 

cultured on plain glass surface. An hour after printing, the actin stress fiber staining showed an 

elongated morphology compared to the rounded morphology seen in cells seeded on glass even 
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after 2 hours. To examine the cell-matrix adhesions, we stained the cell nucleus and the alpha 5 

integrin an hour and 2 hours after printing. The results reveal emergence of physical integrin 

clustering at an hour after printing and enhanced clustering after 2 hours of printing indicating 

rapid reformation and recapitulation of focal adhesion components, which is attributed to the 

preserved cell morphology compared to the control samples (Figure 4-4).  

4.3.4. Shape-changing Surface Provides Contact Guidance Cues for Cellular Organization  

Analysis of cell orientation distribution revealed that cells elongated along the hydrogel 

pattern longitudinal direction well at 24 hours (Figure 4-5C, D). Spatial organization of printed 

cells showed a preferred orientation between 0° and 30° axis, compared to the random 

distribution observed in cells cultured on non-patterned pNIPAAm hydrogel after 24 hours 

(Figure 4-5A, B). Cell alignment calculations were made from the average cell orientation 

distribution values and the results indicate 90.8 % ± 0.11 of cells were aligned within ± 20° of 

the hydrogel array pattern direction.  

 Cellular organization was found to be dependent on the patterning of the hydrogel. 

Significant difference was observed between alignment of cells on non-patterned and patterned 

surfaces. Together these results indicate that the shape-changing hydrogel arrays provide contact 

guidance cues for spatial organization of cells depending on the width dimensions of the arrays. 

4.3.5. Demonstration of Micro-contact Printing Technique on Other Cell Types  

 The micro-contact printing technique described here could be independent of cell types. 

C2C12 cells printed with shape-changing hydrogel stamps were observed to occur under the 

same conditions as the fibroblasts. Myoblasts tissue modules were incubated for 15 minutes at 37 

°C and the tissue was completely transferrable under 1g weight to a target surface coated with 

polylysine within 5 minutes at 4 °C (Figure 4-6).  However, the skeletal myoblasts were 
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observed to be more contractile so precautions were taken to avoid premature release. Viability 

of the myoblasts was determined as 89 %. 

 

 

Figure 4-5: Cellular spatial organization before and after printing from shape-changing hydrogel. 
A & B: Distribution of cell orientation and polar plot on the control samples showing random 
organization. Cells were seeded on plain TCPS with no patterning for 24 hours. C & D: 
Distribution of cell orientation and polar plot on printed tissue precursors samples showing 
aligned organization governed by the hydrogel’s pattern. Cells were seeded on patterned arrays 
for 24 hours with pattern direction at 0° axis. Sample size, n ≥ 3.  
 

4.4. Discussion  

This research study aims to demonstrate the viability of fabricating tissue precursors from 

shape-changing surfaces by utilizing a micro-contact printing technique. Towards this goal, we 

cultured cells on previously developed surface confined poly-isopropylacrylamide hydrogel 

structures and then investigated the parameters to produce functional tissue modules. 3T3 
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fibroblasts were employed as a model cell type mainly to demonstrate the feasibility of printing 

due to its immortalized properties.  

 

 

Figure 4-6: Murine skeletal C2C12 tissue precursors printed with shape-changing hydrogel. 
Fluorescence images of printed Myoblast tissue precursors on polylysine surfaces under applied 
pressure of 1g. Dead cells (red) and Live cells (green stain). Scale bar = 100 µm. 
 

 Notably other forms of printing tissues from stimuli responsive surfaces have developed 

functional transplantable tissue for repairs of corneal dysfunction, periodontal ligament to 

cardiac failure [74, 75, 117, 140]. However, their methods are limited to layer-by-layer assembly 

of tissues, which requires the use of longer incubation times up to 90 minutes at cold 

temperatures due to the hydration limitations of the nanoscale grafted brushes of the 

thermoresponsive surfaces used [141]. Other printing approaches that include inkjet printing and 

mechanical extruders bioprinting technologies seem promising for fabrication of solid organ 

structures owing to their high culture throughput, improved cell seeding densities and controlled 

spatial resolution [55, 56, 133, 135]. Boland and others used a commercial, thermal-based inkjet 

printer in printing Chinese Hamster Ovary (CHO) cells into pre-defined patterns and were able to 

show improved cell viability though patterning of the cells was not well maintained [53, 55, 

142]. In these studies, requirements of cell suspension intermediates; loss of cell viability; need 

for low viscosity solutions to prevent clogging during droplet generation; maintaining cell 
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morphology and organization of cell patterning; and the relatively high cost of printers still 

remains a challenge. An alternative approach is the use of a nozzle-free acoustic ejector to 

overcome clogging [134]. Hydrogel droplet based systems or cell-suspension intermediates were 

found to address some of these challenges. Demirci and others developed a cell-laden hydrogel 

droplet deposition system for printing bladder smooth muscle cells and showed microscale 

spatial resolution while maintaining long-term cell viability [143]. Though the applications of the 

described systems are relevant to tissue engineering and regenerative medicine, an alternative 

approach that addresses rapid formation of tissues and that can retain cell morphology without 

the use of any intermediates between the cells and target substrate is of great benefit.  

 In this study, we demonstrate for the first time the feasibility of printing cells from a 

simple and direct contact printing method that may overcome these challenges. Similar to 

conventional micro-contact printing process whereby the stamp, typically a PDMS template, 

deforms while transferring the material of interest to its target, herein the stamp is a shape-

changing structure that laterally expands around its transition temperature during cell printing. 

This expanding surface allows the stamp to be lifted off the target gradually without smearing or 

distorting the patterned tissues. Cells grown on such surfaces were recently reported to detach as 

intact tissue stripes by an applied strain of at least 25% as a result of lower adhesion strength 

between the ECM and shape-changing surface compared to the stronger bond between cell and 

its ECM [23]. Additionally, failure events common in conventional µCP are similar to our setup. 

Though sagging or roof collapse as commonly reported in µCP [77] are not experienced in this 

particular setup, surface chemistries of the target substrate and the amounts of compressive 

pressure applied during transfer was found to be significant for successful printing.   
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 Fabrication of functional tissues via a printing mechanism requires processes that are not 

detrimental to the health of the cells but rather promotes growth and preserves functionality in 

vivo. Pressures < 1 psi was found to yield approximately 83% in cell viability (Figure 4-2). 

Pressures lower than 0.71 psi impeded cell transfer due to insufficient conformal contact to the 

target surface.  

 In an attempt to optimize the cell viability and to understand which surface is more 

energetically favorable for cell binding, we studied the effects of protein or CAM adsorbed to the 

target surface using a compressive pressure of 0.71 psi. All tissues were printed within 5 

minutes. Collagen type 1 and human plasma fibronectin were selected based on their relative 

abundance physiologically. While polylysine, a chemically synthesized positively charged 

amino-acid was selected to promote cell binding to culture surfaces by electrostatic interactions 

with the negative charged ions of the cells. No statistically significant difference in cell viability 

was observed between the CAMs tested though the polylysine target surface showed higher 

amounts (Figure 4-3). Hence, all studies utilized polylysine for its ease of use and stability.   

 Cellular organization is crucial for controlling microarchitecture and biological functions 

of tissues so we evaluated the alignment and orientations of printed cells as well as the effects of 

pattern width of the hydrogel. Cells proliferated randomly on non- patterned hydrogel. 

Meanwhile, preservation of spatial organization of cells was apparent after printing from the 

hydrogel arrays indicating that the arrays provide contact guidance cues for cells to orient. The 

percentage of cells that oriented along the longitudinal axis of the shape-changing array differs 

depending on the width of the arrays, a result consistent with other findings. A 50 µm pattern 

width significantly showed increased alignment with 3T3 fibroblasts and normal human dermal 

fibroblasts than wider patterns [82, 144]. Patterning dimensions for cell functionality is important 
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and necessary for promoting cell-to-cell communication in cardiomyocytes as reported by 

McDevitt [79]. A specified width dimension of < 30 µm was observed to induce synchronous 

beatings in cardiomyocytes, an electrical coupling property necessary for fabrication of 

functional myocardial constructs.  

 Importantly, examination of the focal adhesion complexes of the printed tissue precursors 

was noticeable shortly after printing. These results suggest that µCP printing technique does not 

hinder the normal regulation of cell binding and signaling activities. The actin filaments and 

alpha 5 integrin markers were observed to be significantly oriented in the cells compared to the 

control samples suggesting that the cytoskeleton of the cell is also regulated by the hydrogel 

array patterning (Figure 4-4). Interestingly, this preservation of the cell-matrix adhesion domains 

allows for assembly of subsequent tissue stripes thus enabling construction of 3D tissues. 

 Finally, we assessed the possibility of extending our simple µCP method to another cell 

type. We chose C2C12 cells for potential applications in skeletal muscle tissue engineering. This 

myoblast demonstrated similar detachment and printing times with the exceptions of the high 

contractility nature of the cell type, which was expected. The cells stripes were observed to 

readily detach while pulling along neighboring cells at higher tension than the fibroblast (data 

not shown). This cell type would be further explored for our sequential stacking of 3D cell stripe 

layers. 

 To our knowledge, µCP of cells directly unto a surface without the need of an 

intermediate has been demonstrated for the first time. Functional tissue precursors can be printed 

within 5 minutes with stamps constructed from a shape-changing hydrogel of poly-N-

isopropylacrylamide. The stamps provide contact guidance cues for tissue spatial organization as 

observed by the cellular organization along the major axis of the hydrogel array. Formation of 
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focal adhesion complexes is prominently observed within a short time after printing. Tissue 

printing developed by a combination of shape-changing surfaces and µCP technique provides an 

alternative approach to other printing techniques allowing for faster production and preserved 

organization. In addition, this process could be optimized to allow printing of unique shapes of 

tissues to aid vascularization upon tissue implantation. Future studies would include fabrication 

of different geometries of the hydrogel arrays to provide contact guidance cues for assorted 

tissue formation.  

4.5. Conclusions  

Micro-contact printing of organized tissue modules from patterned arrays of shape 

changing hydrogel structures was demonstrated for the first time. Tissues are printed under low 

compressive pressures onto preferred target substrate without distorting the cell morphology or 

organization while still preserving its cellular functions. This simple method is easy to use and 

adaptable since no elaborate equipment is required and therefore allows for translation to other 

forms of stimuli responsive systems.  

Future efforts will include optimization and automation of the printing system to enable 

higher printing resolution and culture throughput while exploring printing of versatile patterns 

for development of tissues that have complex organized microarchitecture in vivo. This direct 

method of printing cells without the need of cell suspension intermediates provides a powerful 

tool for investigation of tissue morphogenesis in vitro. 
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CHAPTER 5: ASSEMBLY OF PRINTED TISSUE PRECURSORS INTO THREE-

DIMENSIONAL STRUCTURES 

 

5.1. Introduction 

 Engineering robust biomimetic three-dimensional (3D) tissue structures is crucial in order 

to facilitate the repair of diseased tissues and organs. In tissue engineering, an ideal tissue 

construct should be able to recapitulate the functions of complex tissue micro architecture found 

in native tissues. Construction of 3D tissues in vitro creates an effective design model to 

systematically study a variety of cell types by manipulating cell interactions through tissue 

assembly, patterning or geometry. 

 Functioning of tissues is well correlated with the anatomic structure. Mechanical 

functioning of skeletal muscles is sustained by its vasculature, which is anisotropic in nature 

when fusion between muscle fibers and myoblasts occurs. In the organs, the structural network 

of liver facilitates transportation of waste and products. Each of the lobules in the liver is made 

up of plate-like assemblies of hepatic cells.  Similarly, the highly oriented cyto-architecture 

found in myocardial tissues is important for the proper electromechanical functioning of the 

cardiomyocytes. 

 Previous studies have fabricated patterned 3D tissue structures in vitro by employing 

bioprinting techniques, inkjet printers and a cell sheet stacking manipulator method [56, 84, 

142]. The most prevalent challenge encountered in these techniques is the need to enhance 
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prevascularization in the engineered tissues. The common strategy is to engineer dual cell types 

in different orientations to induce structural organization and promote formation of vascular 

networks upon tissue implantation [80, 145].  Though their results are promising, an alternative 

method that could give rise to rapid production of organized tissue precursors with different sizes 

and geometry is beneficial.  

 Recently, shape-changing hydrogel consisting of poly-N-isopropylacrylamide 

(pNIPAAm) molecules was shown to trigger release of intact tissue modules within 3 minutes 

[23]. Harvested cells from the substrate had > 90% in viability and re-plated cells continued to 

proliferate. The micron scale features of the pNIPAAM hydrogel promoted super hydration of 

the elongated chains and allowed for the fast detachment of tissues without the need for 

metabolic mechanism. Cell detachment occurred quickly at approximately 27 °C, a minor shift 

below the relevant physiologically temperature of 37 °C thus preserving the biological activity of 

the cells.  

 Herein, the lateral expansion capability of the shape-changing poly-N-

isopropylacrylamide hydrogel is used to guide the orientation of cells into a well-organized 3D 

structure. The ability to print tissues into multiple layers and geometry were explored. The 

hypothesis is that the micro-contact technique enables assemblies of viable tissue precursors into 

well-organized 3D structures and that the use of shape-changing surfaces directs formation of 

tissue constructs into diverse geometries, size and organization. To test this hypothesis, the 

objective is to mimic native tissue cell orientation by fabricating tissue modules composed of 

fibroblasts and myoblasts in two orientations through the use of shape-changing hydrogel and a 

micro-contact printing technique.  
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5.2. Materials and Methods 

5.2.1. Materials 

 The materials for this chapter are the same as in section 4.2.1 previously described. 

5.2.2. Preparation of Patterned Stamps 

 The fabrications of patterned stamps are the same as in sections 3.2.2 and 4.2.2 

previously described. In addition, closely spaced arrays of 10 µm x 2µm x 10 µm (wide x height 

x spacing) were fabricated using a mask containing the defined dimensions and photo-

lithography was also employed. 

5.2.3. Cell Culture 

 The cell culture method for this chapter are the same as in section 4.2.3 previously 

described. 

 

 

Figure 5-1: Schematic diagram of micro-contact printing technique. Cells are cultured on shape-
changing stamp; the stamp is inverted and placed in contact with a target surface to facilitate cell 
adhesion; a thermal shift induces swelling which causes rapid detachment of the tissue modules 
from the stamp, transferring the pattern cells to the target surface. 
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5.2.4. Micro-contact Printing of Cells 

 Figure 5-1 shows the schematic diagram of the micro-contact printing technique. Pre-

stained cells (see Appendix B.1.2) with density > 500 cells/mm2 is seeded on polylysine coated 

patterned arrays of the shape-changing hydrogel. After 24 to 48 hours, the stamp containing 

confluent cells is inverted and placed in contact with a target surface to facilitate cell adhesion. 

Then a 1 or 2 gram calibration weight is taped to the back of the seeded stamp and placed on the 

target surface (monolayer of cells or pre-coated TCPS) in medium. The sample is then incubated 

for 15 minutes at 37 °C and immediately transferred to 4 °C chamber for 5 minutes. Then the 

weight is gradually lifted off the target surface leaving behind a cell stripe while no cells are left 

on the stamp. The temperature reduction causes swelling of the hydrogel arrays inducing 

detachment of the tissue modules from the stamp to the target surface. 

5.2.5. Assembly of Multilayered Patterned Cells 

 Two sets of double layer sheets were assembled on an unstained monolayer of confluent 

cells. Patterned stripes of myoblasts were directly printed on the two dishes of monolayer of 

fibroblasts. Collagen solution was cured on one of the monolayers. 100 µg/mL of bovine 

collagen type I with a pH of 7.3 was prepared by following commercially recommended 

protocol. 2 mL of the collagen solution was gradually added to a confluent cell culture dish after 

the medium was removed. The solution was then allowed to cure for 90 minutes at 37 °C.  

 Triple-layer assembly of tissue precursors were constructed by stacking patterned 

myoblast in between a patterned fibroblast and a monolayer of confluent fibroblast. The 

patterned fibroblast and myoblast were pre-stained with cell tracker orange and green 

respectively and stacking was oriented 90 °C from each other. 
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5.3. Results 

5.3.1. Formation of Fibroblasts and Myoblasts Tissue Modules 

 Shape-changing hydrogel from pNIPAAm arrays is use to fabricate tissue modules of 

multiple cell types by employing the micro-contact printing technique. Cells printed from arrays 

of the shape-changing structures maintained their cell orientations either when printed on protein 

coated surfaces or a monolayer of cells (Figures 5-2 & 5-3). No observable differences were seen 

in the printing mechanism of the two cell types. Both cells released from the hydrogel in 5 

minutes at 4 °C under a compressive pressure of 1g calibration weight. However, myoblast cells 

seem to elongate more along the longitudinal axis of the arrays compared to fibroblasts.    

5.3.2. Multilayered Assembly of Tissue Modules  

 Multilayered structures were achieved by stacking tissue modules onto pre-existing layer 

or layers of cells. Figure 5-4 shows the assembly of two layers of cells. A fibroblast cell stripe 

transferred onto a monolayer of fibroblast cells was first observed to print on the monolayer, as 

the cells in that layer seem to pave a pathway for the cell stripe (Figure 5-4 A & B). This 

occurrence was due to the lateral volume expansion of the hydrogel and the amount of 

compressive pressure on the arrays. Swelling of the hydrogel which is induced by the reduction 

in temperature at 4 °C could expand the beam by a factor of 0.5 of its original size [110]. The 

expansion in the hydrogel array is the observed print on the monolayer of cells at the top and 

bottom sides of the tissue array. Reduction in the compressive pressure to 1g-calibration weight 

improved the transfer of the cell stripe (Figure 5-4 C & D). Printing a myoblast cell stripe on a 

monolayer of fibroblast did not influence the printing resolution or outcome compared to the 

fibroblast cell stripe onto fibroblasts monolayer (Figure 5-4 D & E). Printing of intact tissue 

modules is attained on a 3-layered structure (Figure 5-5). The myoblast cell stripe is printed 
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between a layer of fibroblast cell stripe and its monolayer. The 3-layer tissue module structure is 

located where the three boxes overlap. 

 

 

Figure 5-2: Fabrication of fibroblast tissue modules. (A) Confluent monolayers of cells cultured 
on TCPS after 24 hours. (B) Cells cultured on 100 µm wide arrays of shape-changing hydrogel. 
(C) Tissue modules printed on polylysine coated TCPS stained with cell tracker green. (D) 
Printed tissue modules on monolayer of cells. 
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Figure 5-3: Fabrication of myoblast tissue modules. (A) Confluent monolayers of cells cultured 
on TCPS after 48 hours. (B) Cells cultured on 100 µm wide arrays of shape-changing hydrogel. 
(C) Tissue modules printed on polylysine coated TCPS stained with cell tracker green. (D) 
Printed tissue modules on monolayer of cells. 
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Figure 5-4: Assembly of 2-layer tissue modules. (A) Printed fibroblast tissue modules on 
monolayer of fibroblast cells in phase contrast with conformal printing pressure of 2 grams. (B) 
Printed fibroblast tissue modules (red stain) on monolayer of fibroblast cells (green stain), 
fluorescent images. (C) Printed fibroblast tissue modules on monolayer of fibroblast cells with 
cell tracker red staining on both layers with conformal printing pressure of 1 gram. (D) Printed 
myoblast tissue modules on monolayer of fibroblast cells in phase contrast. 
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Figure 5-5: Assembly of 3-layer tissue modules. Monolayer of fibroblast cells (unstained) are 
cultured for 48 hours then myoblast cells (stained green) are printed along the horizontal axis of 
the monolayer as cell stripe 1 while an array of fibroblast cells (stained red) are printed on top 
the cell stripe 1 along the vertical axis of the monolayer as cell stripe 2. 
 
 

 

Figure 5-6: Fabrication of cells from closely spaced arrays of the shape-changing hydrogel. (A) 
Fibroblasts are cultured on 10 µm wide by 10 µm spacing arrays of the microbeams for 24 hours. 
(B) Printed cells from the 10 µm by 10 µm arrays onto a polylysine coated TCPS. 
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5.3.3. Formation of Diverse Tissue Modules 

 Arrays of the shape-changing hydrogel allows for printing of tissue modules with 

different geometries and/or spacing. Fibroblasts cultured on stamps fabricated with closely 

spaced arrays of the microbeams maintained cell orientation along the long axis of the beams 

(Figure 5-6). To our surprise, tissue module released from a 75 µm beam array resulted in a 

buckled structure when printed the protein adsorbed TCPS (Figure 5-7). Cells seeded on arrays 

with aspect ratios > 1.0 is expected to buckle due to conformance to the final structure of the 

hydrogel array in the swollen state [110]. These results suggest that patterning of the hydrogel 

may be used to direct cellular organization of diverse forms. 

 

 

Figure 5-7: Fabrication of buckled tissue modules from 75 µm wide arrays of the shape-changing 
hydrogel. (A) Printed tissue modules on polylysine coated TCPS, calcein staining (B) Live 
(green) /Dead (red) staining of the buckled tissue module.  
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5.4. Discussion 

 The goal of this study is to demonstrate the versatility of the micro-contact printing 

technique for printing cells from patterned arrays of shape-changing hydrogel. To investigate 

how this technique can be used to build functional three-dimensional tissues, fibroblast and 

myoblast cells were cultured independently on the microbeams of the shape-changing hydrogel 

while micro-contact printing technique was used to transfer the organized tissue modules into 

parallel and perpendicular orientations. The possibility of forming diverse tissues was also 

introduced. This study provides knowledge on how to build and control tissue structures that are 

complex in nature.  

 Cellular behavior is influenced by response to surface geometry and co-culture with other 

cell types. Cell reorganization and formation of vascular networks were observed when stripe-

patterned endothelial cells are sandwiched between parallel oriented sheets of normal human 

dermal fibroblasts (NHDF) [80]. However, a perpendicular orientation of the NHDF sheets did 

not reorganize the cells. 

 In this study, tissue modules transferred to protein adsorbed TCPS maintained their 

cellular organization (Figures 5-2 & 5-3). The morphology of the cells was the same before and 

after printing. Myoblast cells were more elongated depicting its normal anisotropic orientation in 

vivo   while the fibroblast cells align along the longitudinal axis of the hydrogel array suggesting 

that the patterning of the hydrogel provide contact guidance cues for cell orientation. This 

organized cell orientation was however more unobtrusive in the multilayered construct (Figure 5-

4 & 5-5). The 3-layered construct showed a change in cell morphology of the two cell stripes 

printed on the cell monolayer though the basal cells maintained its cell organization. Cell 
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reorganization in a multilayered system is commonly observed with multicellular systems 

indicating that the geometry of the base surface can be used to dictate cellular behavior [146]. 

 While assembly of tissue modules via micro-contact printing technique is attainable with 

a shape-changing surface, there were some challenges encountered during the printing process. 

In figure 5-4D, the staining color for both cell layers is uniform; this was due to the infiltration of 

dye solution from the top to the bottom cell monolayer. To address this, concentration of the 

staining solution was significantly lowered and mild improvement was observed. Then a solution 

of collagen was introduced between the layers to prohibit the infiltration. This change only 

significantly distorted the organization of the top cells. Finally, pre-staining the cells prior to 

culturing significantly improved the individual visualization of the cell layers. Most importantly, 

tissues printed from this shape-changing platform with micro-contact printing technique retained 

their biological activity as demonstrated in section 4.4.  

 The feasibility of printing tissues with different geometry was revealed. Cells printed 

from closely spaced arrays of 10 µm (Figure 5-6) maintained their cell organization while 

surprisingly cells detached from a 75 µm wide microbeam (Figure 5-7) showed a well-defined 

buckled tissue structure. These results suggest that different patterning geometries of the shape-

changing hydrogel could direct tissue structures into diverse multipurpose configurations. 

 In order to control cell organization in the 3D multilayered tissue construct, future studies 

will include investigating the underlying mechanisms of cell reorientation by examining the 

effect of cell reorientation duration, influence of cell types, morphology and increased cell 

density. Confocal imaging will be adapted for evaluating the cross section of the multilayered 

tissue construct. Also, different geometries of the shape-changing hydrogel will be fabricated to 

induce printing of tissues with diverse geometries for tissue engineering applications.  
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5.5. Conclusions  

 A micro-contact printing technique was for the first time employed in assembly of tissues 

in an additive manner to create multicomponent spatially controlled three-dimensional functional 

tissues. A novel concept for fabricating multilayered tissues with the flexibility of forming 

diverse tissue structures was introduced. The combination of shape-changing hydrogel and 

micro-contact printing techniques allowed for a well-organized and rapid printing of tissue 

modules that can aid formation of native tissues with complex microarchitecture for regenerative 

medicine.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

 

6.1. Conclusions 

 The key findings in this dissertation are summarized as follows: 

§ Release of tissue modules from shape-changing hydrogel occurs with a small thermal 

reduction by 10 °C below the physiological temperature. 

§ Complete detachment of tissue modules occurred as continuous tissue stripes in less than 

3 minutes. 

§ Cells without cell-to-cell contacts did not detach from the hydrogel suggesting that the 

cohesive strength between the cell contacts plays a significant role during detachment. 

§ A lateral strain of at least 25% is necessary to detach cells that have cell-to-cell contacts 

from the hydrogel array. The mechanism of cell release was primarily a mechanically 

driven process compared to the metabolic driven process reported with the grafted 

pNIPAAm nanoscale films. The difference is attributed to the micron scale features of the 

shape-changing hydrogel array that allows for more hydration of the long chained three-

dimensional arrays of the pNIPAAm molecules. 

§ For the first time, micro-contact printing technique was used to print cells directly onto 

target surfaces without the need of any intermediates. 

§ Cell survival after cell printing depended on the type of target surface, release time, 

temperature and the amounts of conformal pressure applied.  
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§ Printed cells oriented along the longitudinal axis of the hydrogel arrays suggesting that 

the shape-changing hydrogel provides contact guidance cues for cell alignment.  

§ Printing conditions of myoblast and fibroblast cells were the same. The cells printed 

under 5 minutes at 4 °C. 

§ The combination of the shape-changing hydrogel and micro-contact printing technique 

allowed for modular assemblies of tissue modules into 2-layered and 3-layered structures.  

 The research outcomes discussed in this dissertation provide a novel approach to modular 

assemblies of tissue structures for the advancement of engineering diseased or damaged tissues 

and organs.  

6.2. Future Directions 

 The objective of this proposed future work is to increase the experimental knowledge of 

the design and development of functional complex tissues. Thus, this study is designed to 

provide understanding to the fundamental principles governing assembly of organized 3D 

cardiac tissues that closely represents the native myocardium. The successful realization of this 

proposed study should provide a viable construct suitable for improving cardiac function by 

overcoming these key obstacles; vascular integration, diffusion, blood perfusion and new 

capillary formation in vivo thus revolutionize regenerative therapies. 

6.2.1. Establish an Automated Micro-contact Printing Mechanism  

 The mechanics of micro-contact printing biochemical inks to pattern surfaces is well 

established [63, 147, 148]. However, printing tissues without disrupting the cellular membrane or 

organization is a challenge. Dissertation research studies demonstrate the procedure suitable for 

printing cells; though the global organization and cell-to-cell junctions are sometimes not fully 

retained when transferred to the target surface depending on the physical stability of the operator. 
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The ability to control multi-cellular local and global organization is significant for producing 3D 

tissue constructs; thus it is imperative to further investigate a robust method for reliable printing 

of functional cardiac tissues independent of the operator.  

 Create an automated device: Automation of the micro-contact printing of cells cultured 

on shape-changing stamps will enhance productivity and reduce errors caused by shearing of the 

cells during placing or removing stamp from the target surface. An enclosed motorized stage 

with heating and cooling chamber should be built for the contact printing of cells. LabView 

software can be used to record the printing parameters. 

 Assess the main effects of contact printing parameters: A micro-contact printing 

mechanism is governed by having conformal contact between a stamp and its target whereby 

cells efficiently transfer to the target with preserved cell viability and organization. The printing 

parameters include the contact time, release temperature, applied pressure, and the surface 

chemistry of the target. These parameters all play a significant role in maintaining the intact cell 

stripe during and after transfer. The main effects of these factors should be evaluated by 

conducting a 2-level factorial design of experiments (DOE). The measurable outcome will be the 

percentage of remaining attached cells on the stamp after transfer. An optimum printed tissue 

will be a fully viable tissue module with the shortest amount of contact time independent of the 

aspect ratio or geometry of the patterned hydrogel.  

 Evaluate cell morphology, organization and viability of µ-tissue transferred:  To confirm 

the formation of intercalated discs, i.e. the adhering structure responsible for synchronized 

contraction of the myocardium, immunostain the cardiac tissues for desmosomes, cadherins and 

connexins, the cell-to-cell junctions. Transmission electron microscopy (TEM) should be used to 

examine the intercellular junctions that indicate tissue formation. Video via optical microscopy 
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should be used to monitor changes in cell morphology while the NIH Image J software should be 

used to analyze cell alignment and orientation. Cytotoxicity assay containing Calcein AM and 

ethidium homodimer should be used to evaluate cell viability. 

6.2.2. Optimize the Design Parameters of the Stamp  

 Cells are known to respond to their microenvironment therefore the patterning of the 

shape-changing hydrogel must be well characterized in order to fabricate functional 3D cardiac 

tissues. The width and spacing of laminin patterns were found to affect the alignment and 

orientation of contractile myofibrils, and the formation of cell-to-cell junctions [62, 78]. 

Adherent cardiomyocytes (CMs) on narrowly spaced patterns of 10µm and widths < 20µm were 

found to maintain cell alignment and also yield synchronized contractions on laminin coated 

surfaces. Dissertation research studies show that closely spaced arrays (10 µm) of the shape-

changing arrays yield aligned tissue modules along the longitudinal axis of the target surface 

(Figure 5-6). To determine myofibril alignment and synchronous beatings of CMs, the optimal 

adhesive domain geometry for cellular organization should be evaluated. In addition, cell 

morphology, organization and formation of myofibrils are influenced by the rigidity of the 

substrate; the stiffness of the substrate can drive the tension forces between cells [149-151]. 

Thus, the need to evaluate the optimal hydrogel properties by varying the densities of crosslink is 

important. Lower crosslink density gels are softer and do have more degrees of freedom to swell 

leading to more rapid cell sheet recovery. However, a high crosslink density gel may induce the 

stiffness required for the normal mechanical workload of the myocardium. Since organization of 

CM is geometric and substrate stiffness dependent the effects of PNIPAAm array spacing and 

crosslink density should be studied. 
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 Assess the effect of array spacing and modulus on the organization, rate of release and 

pulsation of cardiomyocytes: Photolithography should be used to fabricate master molds with 

new sets of array spacing. The aspect ratio of the arrays should remain constant while the 

spacing and crosslink densities should vary from 5-20µm and 1-4% respectively. Atomic force 

microscopy should be used to evaluate the mechanical force of the arrays. Primary cardiac 

myocytes should be cultured on these arrays and their local and global organization should be 

examined over a prolonged culture using fluorescence microscopy and the NIH image J software 

for analysis. The ease of rapid tissue transfer should be assessed by studying the release kinetics 

induced by a 10°C shift below the culture temperature. The release kinetics should be monitored 

on a video via confocal microscopy. Electrocardiogram (ECG) should be used to evaluate the 

synchronous beating of the engineered CMs. Knowledge gained in this study will establish the 

optimal PNIPAAm patterns required to direct myocytes organization and regulate their 

contractions. 

 Evaluate the cell morphology and expression of myofibrils: To assess cytoskeletal 

organization and expression, immunofluorescence staining with actin phalloidin, cell nuclei 

stain-Hoechst 33342, and antibodies to myosin should be conducted. To confirm the formation 

of intercalated discs, the optimal cardiac tissue should be immunostained for desmosomes, 

cadherins and connexins, the cell-to-cell junctions responsible for synchronized contraction of 

the myocardium. TEM should be used to characterize the myofibril structure and the cell 

junction morphologies.  

6.2.3. Construct Functional Three-dimensional Tissues  

 Since there are no successful clinical trials for regenerating an infarcted heart due to the 

complexity of the organ tissue and vascularization issues then the need to develop a viable tissue 
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construct is of great need. Prevascularization of thick grafts has been shown to promote in vivo 

perfusion, neovascularization and angiogenesis in myocardial ischemia and infarction of rats [89, 

91, 100, 137]. Using the cell-sheet engineering technology, diffusion of nutrients is limited to a 

graft thickness of 80 µm. Multiple surgeries were used to overcome this drawback [137]. 

However, the act of repeated surgeries (~10 times) within 48 hours is not feasible for humans. As 

a result, an alternative strategy to enhance diffusion is necessary. Human umbilical vein 

endothelial cells (HUVEC) can differentiate into beating CMs when co-cultured with neonatal 

rat cardiomyocytes with high efficiency (11 ± 0.5%) [90]. Thus, the feasibility of stacking 

HUVEC between cardiomyocytes to promote neovascularization should be investigated (Figure 

6-1). 

 Fabricate myocardium-like tissues: Assembly of 3D cardiac tissues should be 

accomplished by sequential printing of HUVEC between layers of CMs via the contact printing 

procedure. The CMs should be cultured on the optimal narrowly spaced arrays while the 

HUVEC should be on widely spaced arrays to support vascular lumen formation. To promote 

diffusion, we will study different stacking orientations (parallel and perpendicular) and ratios 

(CM :HUVEC :CM = 3:1:3, 3:2:3, 3:3:3, 4:2:4). Confocal microscopy should be used to analyze 

the corresponding thickness and examine the formation of cell-to-cell junctions between layers 

of adjacent cells. CellTracker dyes should be used to differentiate between layers. The 

engineered 3D construct should be maintained in static cultures for up to 2 weeks with daily 

monitoring and examination of physical properties.  

 Evaluate the therapeutic potential: Immunohistology assays should be used to examine 

the expressed cardiac markers, cell viability, organization, morphology and vasculogenesis of the 

tissue construct. To stimulate cardiac neovascularization perfusion culture with growth factors 
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supplements should be conducted. This culture should be monitored in a custom-built flow 

chamber with the suspended tissue aligned parallel to the flow. Pulsation is crucial for cardiac 

function, as the heart beats ~100,000 times daily [152]. Native myocardium undergo repetitive 

forces during contraction, hence the tissue construct should be able to withstand compressive 

forces up to 3 mN/mm2 [153]. Atomic force microscopy should be used to analyze the 

engineered tissue compressive forces. And an electrocardiogram should be employed to assess 

the synchronous contraction of the engineered cardiac muscle.  

 

 

Figure 6-1: Schematic diagram of proposed future work. Neonatal rat cardiomyocytes are 
cultured on shape-changing poly-(N-isopropylacrylamide) constructs concurrently with 
endothelial cells for formation of intact aligned micro-tissues. Layers of tissues are then stacked 
into parallel or perpendicular orientations to promote diffusion of nutrients.  
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APPENDIX B: EXPERIMENTAL METHODS  

 

B.1. Cell Culture 

 Murine skeletal C2C12 myoblasts (American Type Culture Collection) and NIH/3T3 

mouse embryonic fibroblast cells (American Type Culture Collection) were cultured in 15% or 

10% newborn calf serum (NCS) growth medium respectively, 84% or 89% Dulbecco’s Modified 

Eagle’s Medium (DMEM) and 1% antibiotics (10,000 units/mL penicillin and 10,000 units/mL 

streptomycin) at 37 °C in a humidified atmosphere of 5% CO2. All culture growth medium 

materials were purchased from Life Technologies.  

 C2C12 cells were maintained in culture up to passage number 15 while fibroblasts were 

used up to passage 25. Daily examination of the medium was performed to ensure normal growth 

rate, cell morphology and density. Cells were harvested either every 2 days or once the 

population density has reached 70% for C2C12 or 80% for fibroblast, whichever comes first. 

Harvesting of cells is performed in a laminar flow hood by decanting the old media with a sterile 

glass pipette into a waste collection container. Adherent cells were then rinsed with 10 mL of 

pre-warmed Dulbecco’s phosphate buffered saline without Ca++ and Mg++ ions. 2 mL of cell 

dissociation agent, tryspin-EDTA (Ethylene diamine tetraacetic acid) was added and incubated 

for up to 10 minutes at 37°C to enzymatically release cells from the TCPS surface. Complete 

detachment of the cells is confirmed with an examination under an inverted optical microscope 

(NIKON 100X magnification). For a 1: 3 split, 4 mL of fresh medium was added to the cells and 
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immediately mixed in the fluid by pipetting up and down for at least 5 times to dislodge any 

aggregates of cells. 2 mL each of the cell suspension was dispensed into three 60 mm tissue 

culture polystyrene dish (Fischer Scientific). Then the dishes were incubated at 37 °C in a 

humidified atmosphere of 5% CO2 until the next 2 days or experimental use.  

B.1.1. Cell Counting 

 A Neubauer chamber hemocytometer (Celeromics, Grenoble, France) was employed for 

counting the cell population in each dispensed 35 mm sample-containing dish. 10 µL each was 

removed from the 100 µL of the stored cell suspension (see section B.1) and loaded into the 

chamber cavity on both ends without introducing bubbles or moving the chamber top glass 

cover. The center and four corners of the chamber squares were then counted on both sides to 

make a final count of 10 squares. The number of cells per volume in a sample dish was 

calculated as follows in equation 1. 

  Concentration (cells/mL)  = #  !"  !"##$  !  !"!

#  !"  !"#$%&!  ×  !"#$%"&'
           (1) 

B.1.2. Cell Seeding on Stamps 

 For experimental use, once the attached cells have been released from the TCPS surface, 

the 2 mL of trypsin-EDTA was removed and transferred into a 50 mL conical tube. Fresh 

medium was then added into the flask to make a total 10 mL. For multiple dishes of cells, the 

total medium in the tube changes by 8 mL from the total number of cell suspension. The tube is 

then centrifuged at 1000 RCF for 2.5 minutes. The supernatant fluid was gently decanted by 

using a pipette and fresh medium was added to the tube in the hood. Then immediately pipette 

the cells up and down until the cell pellet was completely dislodged. For cell counting purposes, 

a 100 µL of the cell suspension was placed into a micro-centrifuge tube and stored until use. 
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While the remaining cell suspension was dispense in samples of 2.5 mL each in a 35 mm TCPS.  

Cells are seeded onto fabricated shape-changing hydrogel arrays at a density of 500 -750 

cells/mm2 and cultured at 37 °C until confluence, typically 24 to 48 hours. 

B.2. Fabrication of Geometrically Patterned Shape-Changing Hydrogel Stamps  

 Geometrical patterning of shape-changing hydrogel is prepared by implementing three 

main steps; 1) Development of master mold, 2) Silanization of glass substrate and 3) 

Polymerization of shape-changing stamps. 

B.2.1. Development of Master Mold 

 A mask with different length and width dimensions was designed with AutoCAD and a 

mask aligner (Karl Suss model no.) is used to develop a negative template by employing soft 

lithography technique (Figure 3-1). A 4-inch silicon wafer was cleaned with acetone followed by 

methanol, water and then dried with nitrogen gas. The cleaned wafer was then solvent bake at 

150 °C for 5 minutes and plasma cleaning for 5 minutes at 150 watts to promote efficient 

adhesion to photoresist. Then a SU-8 2025 negative photoresist was gently cast onto the center of 

the wafer after being placed on a spin coater (Laurel WS400A). The spinner was set to 500 rpm 

for 10 seconds in step 1 and 4000 rpm for 30 seconds in step 2. After spinning, the wafer was 

prebaked at 65 °C for 1 minute and then 95 °C for 5 minutes with 2 to 3 minutes of dwell time 

subsequently. The prebaked wafer was mounted to the Karl Suss mask aligner with a setting of 

150 mJ/cm2 and an exposure time of 5 seconds. Then post bake at 65 °C for 1 minute and then 

95 °C for 4 minutes followed by turning off the heat source to gradually cool wafer. The exposed 

wafer was then submerged in a developer and gently swirled for 5 minutes to dissolve the resist. 

Then the wafer was rinsed with isopropanol and nitrogen dry. The template was then examined 

under an optical microscope to verify proper transfer of features from the mask and adjustments 
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were made accordingly either to the exposure time and energy or develop time. A profilometer 

(Tencor Alpha-step 200) was then used to measure the resulting height of the features on the 

template. Finally, the wafer was hard baked at 95 °C for 5 minutes prior to casting 

polydimethylsiloxane (PDMS) for the master mold. To prepare the master molds, approximately 

12 g of Silicone elastomer kits (Sylgard®184) was mixed at 10:1 and completely de-aerated. The 

degassed mixture was then cast onto the developed wafer and cures at 65 °C for at least 1 hour.  

 

Figure B-1: Fabrication of shape-changing stamps via soft lithography technique. 

 

B.2.2. Silanization of Glass Substrates 

 Glass coverslips (22 mm x 22 mm, #1.5) were used as substrates to create covalent 

attachment to the shape-changing hydrogel. The glass coverslips were plasma treated at 100 W 
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for 5 minutes in an oxygen plasma chamber (Plasma Etch, PE 50) and then submerged in a 

solution containing 1mM of 3-(trichlorosilyl)propyl methacrylate (Sigma Aldrich), added to a 

4:1 ratio of heptane and carbon tetrachloride under a oxygen free environment. After 8 minutes 

in the solution, the coverslips were removed and rinsed in hexane and deionized water 

subsequently for 5 minutes each. The glass substrates were then nitrogen dried and stored in a 

desiccator until use. 

B.2.3. Polymerization of Shape-changing Stamps 

 Fabrication of the shape-changing stamp (Figures B-2) was prepared by employing the 

micromolding in capillaries (MIMIC) method and photo-polymerization process (Figures B-1). 

Prepolymer solution was prepared by mixing 1-4% crosslinker (5 mg/mL), 10% 2-dimethoxy-2-

phenylacetophenone (20 mg/mL) photo initiator in 250-mg/mL solution of N-

isopropylacrylamide in acetone. All materials were purchased from Sigma Aldrich. Under 

nitrogen environment, the solution was cast into a precut PDMS template (section B.2.2) by 

placing the template with desired dimension on the silanated glass coverslip with the features 

face down. 30 µL of the solution was then pipetted into the side channel of the mold. An 

alternative to the MIMIC method was to use a compression mold method whereby the solution 

was first added to the glass while the mold was gently compressed on top. Immediately, the 

solution was crosslinked at 350 nm of ultra violet light for 4 minutes. The PDMS mold was 

detached from the glass surface by gently pulling off and the resulting fabricated pNIPPAAm 

arrays were then sequentially rinsed with acetone, ethanol and water to remove any 

unpolymerized monomer. 
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Figure B-2: Shape-changing stamp fabricated from poly-N-isopropylacrylamide. 

 

B.3. Preparation of Stamps for Cell Seeding 

 Fabricated arrays of the shape-changing hydrogel were prepared for cell culture by 

adsorbing a cell adhesion promoter to the surfaces. 50 µL of 0.1 mg/mL of polylysine (PLL) 

solution (Sigma-Aldrich) was added to the stamps for 5 minutes, aspirated and then rinsed twice 

in DPBS. Then the surfaces were air-dried in a laminar hood for at least 2 hours prior to cell 

seeding. 

 A sterilization process is performed for re-used stamps. Stamps with pre-detached cells 

were sterilized by submerging in 70:30 ethanol-water mixtures for 5 minutes. Stamp was then 

allowed to stand for 20 to 30 minutes to evaporate the residual ethanol followed by a 2X rinse in 

DPBS with Ca++ and Mg++ ions. Then the stamps were re-coated with the polylysine solution. 
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Figure B-3: Preparation of shape-changing stamps for cell culture. 

 

B.3.1. Analysis of Stamp Arrays for Residual Adsorbed Protein 

 Arrays of polyisopropylacrylamide hydrogel (stamps) were coated with 1 mg/mL of PLL 

FITC labeled (MW 15,000-30,000, Sigma-Aldrich). FITC-PLL solution was adsorbed on 4 

stamps for 5 minutes, rinsed twice with PBS and allowed to air dry for 2 hours. Two stamps were 

then seeded with NIH/3T3 fibroblast cells (~500 cells/mm2) while the others were incubated in 

the plain standard growth medium without cells. After 24 hours of incubation at 37 °C, the media 

from all four samples were replaced with warm PBS and allowed to incubate for at least 30 

minutes. Warm PBS in all samples were removed and stored while a cold PBS (~10°C) was 

added to initiate expansion of the arrays and thus release cells from the 2 samples followed by an 

incubation for 30 minutes at 4°C. Samples with released cells were centrifuged and the 

supernatant was stored. The removed medium and PBS supernatant before and after swelling 
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were examined with a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific) for 

presence of the poly-l-lysine FITC labeled biomolecule. 

B.4. Method of Cell Release from Stamps 

 Detachment of tissue modules from shape-changing hydrogel occurs by a reduction of the 

stamp temperature, which induces a strain on the hydrogel causing a lateral swelling of the 

microbeams. A strain of at least 25% (section 3.3.4) was necessary to induce sufficient amounts 

of lateral force required to detach the tissues. Rapid release of the modules occurs almost 

instantaneously when the hydrogel was brought in contact with cold DPBS.  2 mL of a 4-10 °C 

DPBS was introduced into the culture dish at 1 mL at a time to give a final temperature of 

approximately 27 °C. A time-lapse image acquisition was used to monitor the cell release. 

B.5. Micro-contact Printing of Tissue Modules 

 Printing of cells onto a target surface was conducted by adapting the micro-contact 

printing technique established by Whitesides [36].  

B.5.1. Preparation of Target Surface 

 The target surface could be a layer of cell sheet or a plain glass surface. In the case of 

glass target, the surface was prepared to promote successful cell transfer by adsorbing cell 

adhesion promoters. A circular glass coverslip (25 mm, #1.0) was plasma treated at 100 W for 5 

minutes and then either 10 µg/mL of human plasma fibronectin (Life Technologies) was 

adsorbed for 30 minutes or 100 µg/mL of bovine collagen type I (Advanced BioMatrix) for 3 

hours, or 0.1 mg/mL of PLL for 5 minutes and then air dry for 2 hours in ambient. Immediately 

after the time point, the protein solutions were rinsed twice with DPBS and stored in the 

incubator at 37 °C until use. 
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 A cell sheet target surface involves adsorption of a protein layer after a confluent cell 

sheet has been achieved. A 3D collagen gel was prepared by slowly adding 1 part of 10X PBS 

with 8 parts cold collagen solution at 3 mg/mL with gentle swirling for 30 seconds. Gradually 

added 700 mL of 0.1 M of sodium hydroxide (NaOH) in 100 mL increments until a pH of 7.3 

was achieved. Slowly 50 mL of deionized water was added to adjust the final volume to a total 

of 10 parts. 1 mL of the collagen solution was then added to a 35 mm cell culture dish containing 

confluent cells with media removed and rinsed with DPBS. To form gel, the dish was cured at 37 

°C for 90 minutes, while the remaining batch of collagen solution was stored at 4°C until use. 

B.5.2. Printing of Cells on Target Surfaces 

 Once cells on the stamps were confluent (section B.1.2) typically within 24 to 48 hours, 

the glass coverslip containing the covalently bound pNIPPAAm arrays (Shape-changing 

hydrogel) were gently removed from the medium and a known weight was adhered to the 

backside with a double-sided tape. To promote proper adhesion, the back of the glass was dried 

off with a Kleenex wipe. The added weight allows conformal contact to the target surface. The 

glass was then gently placed on top of the target surface, which contains 1 mL of media. 

Immediately the mated surfaces were placed incubated at 37 °C for 15 minutes to stabilize the 

cells on the target surface.  Printing of the cells occurs by subjecting the mated surfaces to a 

rapid cold environment at 4°C for 5 minutes. The weight with the stamp was gradually lifted off 

the target surface while the tissue was printed on the target surface. Due to the temperature 

change below the stamp-hydrogel lower critical solution temperature (LCST), a lateral expansion 

occurs sufficient enough to disrupt the bond between the extracellular matrices (ECM) from the 

surface of the stamp. And the tissue module was successfully printed on the target surface.  
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B.5.3. Stamp Force Analysis  

 A force analysis was conducted to examine the appropriate compressive pressure 

necessary to induce an optimum viable cell. This analysis was determined by varying the amount 

of pressure applied to the stamp during printing onto the target surface.  To establish the optimal 

load required, calibration weights in 20g, 10g, 5g, 2g or 1g were separately applied to the 

backside of the stamp while in contact to the target. After duration of 5 minutes at 4 °C, the load 

and stamp was gently removed and viability of the printed cells was assessed as described in 

section B.6.1. The corresponding compressive load applied is tabulated in Table B-1. 

Table B-1: Compressive pressure applied during printing of tissues 

Surface area of stamp: 8 beams by 50 µm width by 5 mm long = 2 mm2 ≈ 0.0031 in2 

B.6. Cell Analysis  

 The viability and metabolic activity of the tissue modules were analyzed before and after 

printing to evaluate cell fate.  

 

 

Weight 

(g) 

Force 

(N) 

Pressure 

(N/mm2) 

Force 

(lbf) 

Pressure 

(psi) 

1 0.01 0.005 0.0022 0.71 

2 0.02 0.01 0.0045 1.45 

5 0.05 0.025 0.011 3.55 

10 0.1 0.05 0.022 7.10 

20 0.2 0.1 0.045 14.5 
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B.6.1. Evaluation of Cell Viability  

 A combined Live/Dead kit containing two components, calcein AM and ethidium 

homodimer-1 (Molecular Probes, Invitrogen) fluorescent molecules were used to assess the 

viability of cells. The staining stock solution diluted in PBS for a final concentration of 40 µM 

for calcein AM and 20 µM for ethidium homodimer and then vortex for thorough mixing. A 150 

to 300-µL of the working solution was directly added to a rinsed surface of a cell sheet (control 

samples) and/or printed cells such that the cells are completely in contact with the dye solution. 

The cells were then incubated for 15-30 minutes at 37 °C followed by a rinse with warm PBS 

and a fresh warm medium was added. The stained sample was then viewed under a fluorescence 

microscope. Cells with red fluorescence indicate dead cells while green cells represent the live 

cells. The number of viable cells per sample was determined using the equation 2. 

Viability of cells (%) =    #  !"  !"#$  !"##$
!"!#$  #  !"  !"##$  (!"#$!  !"#!)

×  100      (2) 

B.6.2. Preparation of Cell Tracker Probes  

 Fluorescent cell tracker probes, Green CMFDA and Orange CMTMR (Molecular Probes, 

Invitrogen) were used to trace live cells. A working solution was prepared by separately diluting 

each probe in PBS to give a final concentration of 5 µM. Cells were stained either in suspension 

or attached to the 35mm dish. For cells in suspension, cells were centrifuged at 1000 RCF for 2.5 

minutes and the supernatant is aspirated while the cells are resuspended in pre-warmed working 

solution. While for adherent cells, the medium was replaced with pre-warmed working solution. 

The cells were then incubated for 30 minutes at 37 °C. The dye solution was replaced with serum 

free medium and incubated for another 30 minutes at 37 °C to allow secretion of the 
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chloromethyl groups from the cells. Then the cells were rinsed with PBS and resuspended in 

standard growth medium until imaging. 

B.6.3. Immunofluorescence  

 Tissue modules were examined for preserved cellular physiology by staining cells with 

immunofluorescence molecules after fixation. Control and test samples were washed twice with 

PBS then fixed in ice-cold 3.7% formaldehyde (Sigma-Aldrich) for 5 minutes followed by a 

permeabilization step in cold cytoskeleton buffer (CSK) with Triton X-100 (Sigma-Aldrich) and 

protease inhibitors for 10 minutes. Non-specific adsorption was prevented by adding a blocking 

buffer that was composed of 5% NCS and 0.01% sodium azide (NaN3, Sigma-Aldrich) in 

complete DPBS for at least 1 hour. Then cells were incubated cells with 1: 100 primary 

antibodies diluted in blocking buffer for an hour. The cells were washed three times with DPBS 

for 5 minutes each followed by incubation in a blocking buffer solution of Alexa Fluor 488 

secondary antibodies, 1:200 or 1:100 goat anti-rabbit IgG secondary antibodies conjugated and 

1: 50 Alexa Fluor 568 phalloidin and 1:2000 Hoechst 33342. The samples were then covered in a 

dark place for an hour and then rinsed three times with DPBS for 5 minutes each followed by 

another rinsing step in deionized water to prevent salt crystallization. The samples were then 

mounted on No. 1.5 glass slide with mounting media and the edges were sealed with clear nail 

polish to prevent drying and air bubbles. 

B.6.4. Imaging and Analysis 

 Micrographs and time lapse video images (60 fps) of the cell morphology, release and 

viability were all captured by an Elipse Ti-U microscope (Nikon Instruments) equipped with a 

CCD camera (CoolSNAP HQ2, Photometrics, Tuscon) and a 10X, 40X and 60X objective lens 
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using either a phase contrast or DIC filter. The images were analyzed with NIS Elements 

advanced research software version 4.20 (Nikon Instruments). 

 ImageJ v1.49s (NIH, USA) was employed for cell counting and orientation analysis. For 

printed patterned cells, the orientations of cells were obtained by measuring the angle between 

the cell morphology and the reference origin, typically the longitudinal axis. While in the control 

samples in which the cells were randomly distributed, the angle between major and minor axis of 

the cells were measured.  

B.6.5. Data Analysis 

 Minitab statistical tools were used for data analysis. For pairwise comparison, either a 

two-tailed Student’s t-test or a single factor ANOVA test was used followed by Tukey’s test 

where p < 0.05 was considered statistically significant.  In general, a sample size of n ≥ 3 was 

used in all experiments. 

 Cell alignment data was determined from the orientation distribution values as the 

average amount of cells oriented within ± 10° of the preferred angle of orientation i.e. 

longitudinal axis of the hydrogel array. 
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